FE-Logo
  • Home
  • Study Material
  • INTRODUCTION OF SOIL MECHANICS
    • GEOTECHNICAL LESSONS FROM FAILURES
    • BASIC GEOLOGY
    • INTRODUCTION OF SOILS INVESTIGATION
    • PHASE RELATIONSHIPS
    • Importance of soil compaction
    • HEAD AND PRESSURE VARIATION IN A FLUID AT REST
    • GEOLOGICAL CHARACTERISTICS AND PARTICLE SIZES OF SOILS
    • Composition of the Earth’s Crust
    • PHASES OF A SOILS INVESTIGATION
    • PHYSICAL STATES AND INDEX PROPERTIES OF FINE-GRAINED SOILS
    • INTERPRETATION OF PROCTOR TEST RESULTS
    • DARCY’S LAW
    • COMPOSITION OF SOILS
    • SOILS EXPLORATION PROGRAM
    • DETERMINATION OF THE LIQUID, PLASTIC, AND SHRINKAGE LIMITS
    • SOIL CLASSIFICATION SCHEMES
    • FIELD COMPACTION
    • FLOW PARALLEL TO SOIL LAYERS
    • Surface Forces and Adsorbed Water
    • Soil Identifi cation in the Field
    • DETERMINATION OF THE HYDRAULIC CONDUCTIVITY
    • DETERMINATION OF PARTICLE SIZE OF SOILS
    • Soil Sampling
    • Falling-Head Test
    • Particle Size of Fine-Grained Soils
    • Groundwater Conditions
    • Pumping Test to Determine the Hydraulic Conductivity
    • COMPARISON OF COARSE-GRAINED AND FINE-GRAINED SOILS
    • Types of In Situ or Field Tests
    • GROUNDWATER LOWERING BY WELLPOINTS

  • SOIL WATER AND WATER FLOW
    • STRESSES AND STRAINS
    • STRESS AND STRAIN INVARIANTS
    • IDEALIZED STRESS–STRAIN RESPONSE AND YIELDING
    • Hooke’s Law Using Stress and Strain Invariants
    • PLANE STRAIN AND AXIAL SYMMETRIC CONDITIONS
    • STRESS PATHS
    • Axisymmetric Condition
    • Plotting Stress Paths Using Two-Dimensional Stress Parameters
    • ANISOTROPIC, ELASTIC STATES
    • Mohr’s Circle for Stress States
    • Mohr’s Circle for Strain States
    • The Principle of Effective Stress
    • Effective Stresses Due to Geostatic Stress Fields
    • Effects of Capillarity
    • Effects of Seepage
    • LATERAL EARTH PRESSURE AT REST
    • STRESSES IN SOIL FROM SURFACE LOADS
    • Strip Load
    • Uniformly Loaded Rectangular Area
    • Vertical Stress Below Arbitrarily Shaped Areas

  • STRESS DISTRIBUTIONCOMPRESSIBILITY AND SETTLEMENT
    • BASIC CONCEPTS
    • TYPICAL RESPONSE OF SOILS TO SHEARING FORCES
    • BASIC CONCEPTS
    • Consolidation Under a Constant Load—Primary Consolidation
    • Effects of Increasing the Normal Effective Stress
    • Soil Yielding
    • Void Ratio and Settlement Changes Under a Constant Load
    • Effects of Soil Tension
    • Primary Consolidation Parameters
    • Coulomb’s Failure Criterion
    • CALCULATION OF PRIMARY CONSOLIDATION SETTLEMENT
    • Taylor’s Failure Criterion
    • Procedure to Calculate Primary Consolidation Settlement
    • Mohr–Coulomb Failure Criterion
    • ONE-DIMENSIONAL CONSOLIDATION THEORY
    • PRACTICAL IMPLICATIONS OF THE FAILURE CRITERIA
    • Solution of Governing Consolidation Equation Using Fourier Series
    • INTERPRETATION OF THE SHEAR STRENGTH OF SOILS
    • Finite Difference Solution of the Governing Consolidation Equation
    • LABORATORY TESTS TO DETERMINE SHEAR STRENGTH PARAMETERS
    • SECONDARY COMPRESSION SETTLEMENT
    • Conventional Triaxial Apparatus
    • Oedometer Test
    • Unconfi ned Compression (UC) Test
    • Determination of the Coeffi cient of Consolidation
    • Consolidated Undrained (CU) Compression Test
    • Determination of the Past Maximum Vertical Effective Stress
    • POREWATER PRESSURE UNDER AXISYMMETRIC UNDRAINED LOADING
    • PRECONSOLIDATION OF SOILS USING WICK DRAINS
    • OTHER LABORATORY DEVICES TO MEASURE SHEAR STRENGTH
    • Hollow-Cylinder Apparatus
    • FIELD TESTS

  • SHEAR STRENGTH
    • ALLOWABLE STRESS AND LOAD AND RESISTANCE FACTOR DESIGN
    • COLLAPSE LOAD USING THE LIMIT EQUILIBRIUM METHOD
    • Prediction of the Behavior of Coarse-Grained Soils Using CSM
    • BEARING CAPACITY EQUATIONS
    • ELEMENTS OF THE CRITICAL STATE MODEL
    • MAT FOUNDATIONS
    • FAILURE STRESSES FROM THE CRITICAL STATE MODEL
    • BEARING CAPACITY OF LAYERED SOILS
    • Undrained Triaxial Test
    • SETTLEMENT CALCULATIONS
    • MODIFICATIONS OF CSM AND THEIR PRACTICAL IMPLICATIONS
    • Primary Consolidation Settlement
    • RELATIONSHIPS FROM CSM THAT ARE OF PRACTICAL SIGNIFICANCE
    • DETERMINATION OF BEARING CAPACITY AND SETTLEMENT OF COARSE-GRAINED SOILS
    • Relationships Among the Tension Cutoff, Mean Effective Stress, and Preconsolidation Stress
    • Cone Penetration Test (CPT)
    • Relationships Among Undrained Shear Strength, Critical State Friction Angle, and Preconsolidation Ratio
    • Plate Load Test (PLT)
    • Relationship Between the Normalized Undrained Shear Strength of One-Dimensionally Consolidated or Ko-Consolidated and Isotropically
    • SHALLOW FOUNDATION ANALYSIS USING CSM
    • Relationship Between the Normalized Undrained Shear Strength at Initial Yield and at Critical State for Overconsolidated Fine-Grained Soils Under Triaxial Test Condition
    • Dense, Coarse-Grained Soils
    • Relationship Between Direct Simple Shear Tests and Triaxial Tests
    • Relationship for the Application of Drained and Undrained
    • Relationship Among Excess Porewater Pressure, Preconsolidation Ratio, and Critical State Friction Angle
    • Undrained Shear Strength, Liquidity Index, and Sensitivity
    • SOIL STIFFNESS
    • STRAINS FROM THE CRITICAL STATE MODEL
    • Shear Strains
    • CALCULATED STRESS–STRAIN RESPONSE
    • APPLICATION OF CSM TO CEMENTED SOILS

  • SLOPE STABILITY
    • TYPES OF PILES AND INSTALLATION
    • TWO-DIMENSIONAL FLOW OF WATER THROUGH POROUS MEDIA
    • BASIC CONCEPTS OF LATERAL EARTH PRESSURES
    • SOME CAUSES OF SLOPE FAILURE
    • Pile Installation
    • FLOWNET SKETCHING
    • COULOMB’S EARTH PRESSURE THEORY
    • Construction Activities
    • LOAD CAPACITY OF SINGLE PILES
    • INTERPRETATION OF FLOWNET
    • RANKINE’S LATERAL EARTH PRESSURE FOR A SLOPING BACKFILL AND A SLOPING WALL FACE
    • INFINITE SLOPES
    • PILE LOAD TEST (ASTM D 1143)
    • FLOW THROUGH EARTH DAMS
    • LATERAL EARTH PRESSURES FOR A TOTAL STRESS ANALYSIS
    • ROTATIONAL SLOPE FAILURES
    • METHODS USING STATICS FOR DRIVEN PILES
    • SOIL FILTRATION
    • APPLICATION OF LATERAL EARTH PRESSURES TO RETAINING WALLS
    • METHOD OF SLICES
    • PILE LOAD CAPACITY OF DRIVEN PILES BASED ON SPT AND CPT RESULTS
    • TYPES OF RETAINING WALLS AND MODES OF FAILURE
    • APPLICATION OF THE METHOD OF SLICES
    • LOAD CAPACITY OF DRILLED SHAFTS
    • STABILITY OF RIGID RETAINING WALLS
    • PROCEDURE FOR THE METHOD OF SLICES
    • PILE GROUPS
    • STABILITY OF FLEXIBLE RETAINING WALLS
    • STABILITY OF SLOPES WITH SIMPLE GEOMETRY
    • ELASTIC SETTLEMENT OF PILES
    • Analysis of Sheet Pile Walls in Mixed Soils
    • CONSOLIDATION SETTLEMENT UNDER A PILE GROUP
    • BRACED EXCAVATION
    • SETTLEMENT OF DRILLED SHAFTS
    • MECHANICAL STABILIZED EARTH WALLS
    • PILE-DRIVING FORMULAS AND WAVE EQUATION
    • OTHER TYPES OF RETAINING WALLS
    • LATERALLY LOADED PILES
    • MICROPILES

Branch : Civil Engineering
Subject : Soil Mechanics
Unit : INTRODUCTION OF SOIL MECHANICS

GEOTECHNICAL LESSONS FROM FAILURES


Description:

All structures that are founded on earth rely on our ability to design safe and economic foundations. Because of the natural vagaries of soils, failures do occur. Some failures have been catastrophic and have caused severe damage to lives and property; others have been insidious. Failures occur because of inadequate site and soil investigations; unforeseen soil and water conditions; natural hazards; poor engineering analysis, design, construction, and quality control; damaging postconstruction activities; and usage outside the design conditions.

 

 

When failures are investigated thoroughly, we obtain lessons and information that will guide us to prevent similar types of failure in the future. Some types of failure caused by natural hazards (earthquakes, hurricanes, etc.) are diffi cult to prevent, and our efforts must be directed toward solutions that mitigate damages to lives and properties.

 

 


One of the earliest failures that was investigated and contributed to our knowledge of soil behavior is the failure of the Transcona Grain Elevator in 1913 ). Within 24 hours after loading the grain elevator at a rate of about 1 m of grain height per day, the bin house began to tilt and settle. Fortunately, the structural damage was minimal and the bin house was later restored. No borings were done to identify the soils and to obtain information on their strength. Rather, an open pit about 4 m deep was made for the foundations and a plate was loaded to determine the bearing strength of the soil.

 

 

 

The information gathered from the Transcona Grain Elevator failure and the subsequent detailed soil investigation was used (Peck and Bryant, 1953; Skempton, 1951) to verify the theoretical soil bearing strength. Peck and Bryant found that the applied pressure from loads imposed by the bin house and the grains was nearly equal to the calculated maximum pressure that the soil could withstand, thereby lending support to the theory for calculating the bearing strength of soft clay soils. We also learn from this failure the importance of soil investigations, soils tests, and the effects of rate of loading.

 

 

The Transcona Grain Elevator was designed at a time when soil mechanics was not yet born. One eyewitness (White, 1953) wrote: “Soil Mechanics as a special science had hardly begun at that time. If as much had been known then as is now about the shear strength and behavior of soils, adequate borings would have been taken and tests made and these troubles would have been avoided. We owe more to the development of this science than is generally recognized.”

 

MARVELS OF CIVIL ENGINEERING—THE HIDDEN TRUTH:

 

 

The work that geotechnical engineers do is often invisible once construction is completed. For example, four marvelous structures—the Willis Tower (formerly called the Sears Tower, the Empire State Building , the Taj Mahal , and the Hoover Dam (Figure —grace us with their engineering and architectural beauty. However, if the foundations, which are invisible, on which these structures stand were not satisfactorily designed, then these structures would not exist. A satisfactory foundation design requires the proper application of soil mechanics principles, accumulated experience, and good judgment.

 

 

 

The stability and life of any structure—a building, an airport, a road, dams, levees, natural slopes power plants—depend on the stability, strength, and deformation of soils. If the soil fails, structures founded on or within it will fail or be impaired, regardless of how well these structures are designed. Thus, successful civil engineering projects are heavily dependent on geotechnical engineering.

Questions of this topic


  • DESCRIBE GEOTECHNICAL LESSONS FROM FAILURES?

    Answer this
Ask your question

>