FE-Logo
  • Home
  • Study Material
  • INTRODUCTION OF SURVEYING
    • INTRODUCTION
    • REFERENCE ELLIPSOID
    • BASIC MEASUREMENTS
    • The geoid
    • PROTECTION AND REFERENCING
    • CONTROL NETWORKS
    • The ellipsoid
    • BASIC SETTING-OUT PROCEDURES USING COORDINATES
    • LOCATING POSITION
    • COORDINATE SYSTEMS
    • USE OF GRIDS
    • PLOTTING DETAIL
    • Geodetic coordinates
    • SETTING OUT BUILDINGS
    • Computer-aided design (CAD)
    • Cartesian coordinates
    • Error and uncertainty
    • Plane rectangular coordinates
    • SIGNIFICANT FIGURES
    • Height
    • ERRORS IN MEASUREMENT
    • WEIGHT MATRIX
    • LOCAL SYSTEMS
    • Probability
    • ERROR ANALYSIS
    • Deviation of the vertical
    • INDICES OF PRECISION
    • VARIANCE-COVARIANCE MATRIX OF THE PARAMETERS
    • COMPUTATION ON THE ELLIPSOID
    • COMBINATION OF ERRORS
    • Uncertainty of addition or subtraction
    • Eigenvalues, eigenvectors and error ellipses
    • BLUNDER DETECTION
    • RELIABILITY OF THE OBSERVATIONS
    • PRACTICAL CONSIDERATIONS
    • ESTIMATION IN THREE DIMENSIONS

  • LEVELLING
    • LEVELLING
    • OPTICAL METHODS
    • CURVATURE AND REFRACTION
    • MECHANICAL METHODS
    • EQUIPMENT
    • Weiss quadrilateral
    • INSTRUMENT ADJUSTMENT
    • PARAMETER VECTOR
    • Single wires in two shafts
    • Automatic level
    • DESIGN MATRIX AND OBSERVATIONS VECTOR
    • GYRO-THEODOLITE
    • PRINCIPLE OF LEVELLING
    • Plan network
    • SOURCES OF ERROR
    • Distance equation
    • LEVELLING APPLICATIONS
    • Direction & Angle equation
    • Direct and Indirect contouring
    • Controlling earthworks
    • RECIPROCAL LEVELLING
    • PRECISE LEVELLING
    • Parallel plate micrometer
    • ERROR ELLIPSES
    • Field procedure
    • Booking and computing
    • DIGITAL LEVELLING
    • Factors affecting the measuring procedure
    • TRIGONOMETRICAL LEVELLING

  • CONTOURING
    • TAPES
    • Introduction of Satellite positioning
    • FIELD WORK
    • GPS SEGMENTS
    • Measuring in catenary
    • GPS
    • DISTANCE ADJUSTMENT
    • SATELLITE ORBITS
    • Sag
    • BASIC PRINCIPLE OF POSITION FIXING
    • ERRORS IN TAPING
    • DIFFERENCING DATA
    • Tension,Sag and Slope
    • GPS OBSERVING METHODS
    • ELECTROMAGNETIC DISTANCE MEASUREMENT (EDM)
    • Kinematic positioning
    • ERROR SOURCES
    • Global datums
    • GPS SYSTEM FUTURE
    • DATUM TRANSFORMATIONS
    • GALILEO
    • ORTHOMORPHIC PROJECTION
    • APPLICATIONS
    • ORDNANCE SURVEY NATIONAL GRID
    • (t – T) correction
    • PRACTICAL APPLICATIONS
    • Contouring
    • HEIGHTING WITH GPS

  • Theodolite Surveying
    • PLANE RECTANGULAR COORDINATES
    • PRINCIPLE OF LEAST SQUARES
    • PRINCIPLE OF LEAST SQUARES
    • TRAVERSING
    • LINEARIZATION
    • LEAST SQUARES APPLIED TO SURVEYING
    • Reconnaissance
    • NETWORKS
    • LINEARIZATION
    • Sources of error
    • Traverse computation
    • TRIANGULATION
    • Resection and intersection
    • Resection
    • NETWORKS
    • INSTRUMENT ADJUSTMENT
    • FIELD PROCEDURE
    • Setting up using the optical plumb-bob
    • MEASURING ANGLES
    • Measurement by directions
    • SOURCES OF ERROR

  • Simple Curves
    • CIRCULAR CURVES
    • Plotted areas
    • RESPONSIBILITY ON SITE
    • PHOTOGRAMMETRY
    • SETTING OUT CURVES
    • PARTITION OF LAND
    • COMPOUND AND REVERSE CURVES
    • CROSS-SECTIONS
    • SHORT AND/OR SMALL-RADIUS CURVES
    • VOLUMES
    • TRANSITION CURVES
    • Effect of curvature on volumes
    • Centrifugal ratio
    • MASS-HAUL DIAGRAMS
    • CONTROLLING VERTICALITY
    • The equation of motion
    • Coefficient of friction
    • CONTROLLING GRADING EXCAVATION
    • Sources of error
    • SETTING-OUT DATA
    • ROUTE LOCATION
    • LINE AND LEVEL
    • Highway transition curve tables (metric)
    • THE OSCULATING CIRCLE
    • Transitions joining arcs of different radii (compound curves)
    • Coordinates on the transition spiral
    • VERTICAL CURVES
    • Vertical curve design
    • Sight distances
    • Permissible approximations in vertical curve computation

Branch : Civil Engineering
Subject : Surveying-I
Unit : INTRODUCTION OF SURVEYING

INTRODUCTION


DEFINITION:
Surveying may be defined as the science of determining the position, in three dimensions, of natural and man-made features on or beneath the surface of the Earth. These features may be represented in analogue form as a contoured map, plan or chart, or in digital form such as a digital ground model (DGM). In engineering surveying, either or both of the above formats may be used for planning, design and construction of works, both on the surface and underground. At a later stage, surveying techniques are used for dimensional control or setting out of designed constructional elements and also for monitoring deformation movements.

 


In the first instance, surveying requires management and decision making in deciding the appropriate methods and instrumentation required to complete the task satisfactorily to the specified accuracy and within the time limits available. This initial process can only be properly executed after very careful and detailed reconnaissance of the area to be surveyed. When the above logistics are complete, the field work – involving the capture and storage of field data – is carried out using instruments and techniques appropriate to the task in hand.

 

Processing the data is the next step in the operation. The majority, if not all, of the computation will be carried out with computing aids ranging from pocket calculator to personal computer. The methods adopted will depend upon the size and precision of the survey and the manner of its recording; whether in a field book or a data logger. Data representation in analogue or digital form may now be carried out by conventional cartographic plotting or through a totally automated computer-based system leading to a paper- or screen-based plot. In engineering, the plan or DGM is used when planning and designing a construction project. The project may be a railway, highway, dam, bridge, or even a new town complex. No matter what the work is, or how complicated, it must be set out on the ground in its correct place and to its correct dimensions, within the tolerances specified. To this end, surveying procedures and instrumentation of varying precision and complexity are used depending on the project in hand.

 

PRINCIPLES:
Every profession must be founded upon sound practice and in this engineering surveying is no different. Practice in turn must be based upon proven principles. This section is concerned with examining the principles of survey, describing their interrelationship and showing how they may be applied in practice. Most of the principles below have an application at all stages of a survey and it is an unwise and unprofessional surveyor who does not take them into consideration when planning, executing, computing and presenting the results of the survey work. The principles described here have application across the whole spectrum of survey activity, from field work to photogrammetry, mining surveying to metrology, hydrography to cartography, and cadastral to construction surveying.

 

Control:
A control network is the framework of survey stations whose coordinates have been precisely determined and are often considered definitive. The stations are the reference monuments, to which other survey work of a lesser quality is related. By its nature, a control survey needs to be precise, complete and reliable and it must be possible to show that these qualities have been achieved. This is done by using equipment of proven precision, with methods that satisfy the principles and data processing that not only computes the correct values but gives numerical measures of their precision and reliability. Since care needs to be taken over the provision of control, then it must be planned to ensure that it achieves the numerically stated objectives of precision and reliability. It must also be complete as it will be needed for all related and dependent survey work. Other survey works that may use the control will usually be less precise but of greater quantity.

 

Examples are setting out for earthworks on a construction site, detail surveys of a greenfield site or of an as-built development and monitoring many points on a structure suspected of undergoing deformation. The practice of using a control framework as a basis for further survey operations is often called ‘working from the whole to the part’. If it becomes necessary to work outside the control framework then it must be extended to cover the increased area of operations. Failure to do so will degrade the accuracy of later survey work even if the quality of survey observations is maintained. For operations other than setting out, it is not strictly necessary to observe the control before other survey work. The observations may be concurrent or even consecutive. However, the control survey must be fully computed before any other work is made to depend upon it.

 

Economy of accuracy:
Surveys are only ever undertaken for a specific purpose and so should be as accurate as they need to be, but not more accurate. In spite of modern equipment, automated systems, and statistical data processing the business of survey is still a manpower intensive one and needs to be kept to an economic minimum. Once the requirement for a survey or some setting out exists, then part of the specification for the work must include a statement of the relative and absolute accuracies to be achieved. From this, a specification for the control survey may be derived and once this specification has been achieved, there is no requirement for further work.

 

Consistency:
Any ‘product’ is only as good as the most poorly executed part of it. It matters not whether that ‘product’ is a washing machine or open heart surgery, a weakness or inconsistency in the endeavour could cause a catastrophic failure. The same may apply in survey, especially with control. For example, say the majority of control on a construction site is established to a certain designed precision. Later one or two further control points are less well established, but all the control is assumed to be of the same quality. When holding-down bolts for a steelwork fabrication are set out from the erroneous control it may require a good nudge from a JCB to make the later stages of the steelwork fit.

 

The Independent check:
The independent check is a technique of quality assurance. It is a means of guarding against a blunder or gross error and the principle must be applied at all stages of a survey. Failure to do so will lead to the risk, if not probability, of ‘catastrophic failure’ of the survey work. If observations are made with optical or mechanical instruments, then the observations will need to be written down. A standard format should be used, with sufficient arithmetic checks upon the booking sheet to ensure that there are no computational errors. The observations should be repeated, or better, made in a different manner to ensure that they are in sympathy with each other. For example, if a rectangular building is to be set out, then once the four corners have been set out, opposite sides should be the same length and so should the diagonals. The sides and diagonals should also be related through Pythagoras’ theorem. Such checks and many others will be familiar to the practising surveyor.

Questions of this topic


  • DESCRIBE INTRODUCTION?

    Answer this
Ask your question

>