FE-Logo
  • Home
  • Study Material
  • INTRODUCTION OF SURVEYING
    • INTRODUCTION
    • REFERENCE ELLIPSOID
    • BASIC MEASUREMENTS
    • The geoid
    • PROTECTION AND REFERENCING
    • CONTROL NETWORKS
    • The ellipsoid
    • BASIC SETTING-OUT PROCEDURES USING COORDINATES
    • LOCATING POSITION
    • COORDINATE SYSTEMS
    • USE OF GRIDS
    • PLOTTING DETAIL
    • Geodetic coordinates
    • SETTING OUT BUILDINGS
    • Computer-aided design (CAD)
    • Cartesian coordinates
    • Error and uncertainty
    • Plane rectangular coordinates
    • SIGNIFICANT FIGURES
    • Height
    • ERRORS IN MEASUREMENT
    • WEIGHT MATRIX
    • LOCAL SYSTEMS
    • Probability
    • ERROR ANALYSIS
    • Deviation of the vertical
    • INDICES OF PRECISION
    • VARIANCE-COVARIANCE MATRIX OF THE PARAMETERS
    • COMPUTATION ON THE ELLIPSOID
    • COMBINATION OF ERRORS
    • Uncertainty of addition or subtraction
    • Eigenvalues, eigenvectors and error ellipses
    • BLUNDER DETECTION
    • RELIABILITY OF THE OBSERVATIONS
    • PRACTICAL CONSIDERATIONS
    • ESTIMATION IN THREE DIMENSIONS

  • LEVELLING
    • LEVELLING
    • OPTICAL METHODS
    • CURVATURE AND REFRACTION
    • MECHANICAL METHODS
    • EQUIPMENT
    • Weiss quadrilateral
    • INSTRUMENT ADJUSTMENT
    • PARAMETER VECTOR
    • Single wires in two shafts
    • Automatic level
    • DESIGN MATRIX AND OBSERVATIONS VECTOR
    • GYRO-THEODOLITE
    • PRINCIPLE OF LEVELLING
    • Plan network
    • SOURCES OF ERROR
    • Distance equation
    • LEVELLING APPLICATIONS
    • Direction & Angle equation
    • Direct and Indirect contouring
    • Controlling earthworks
    • RECIPROCAL LEVELLING
    • PRECISE LEVELLING
    • Parallel plate micrometer
    • ERROR ELLIPSES
    • Field procedure
    • Booking and computing
    • DIGITAL LEVELLING
    • Factors affecting the measuring procedure
    • TRIGONOMETRICAL LEVELLING

  • CONTOURING
    • TAPES
    • Introduction of Satellite positioning
    • FIELD WORK
    • GPS SEGMENTS
    • Measuring in catenary
    • GPS
    • DISTANCE ADJUSTMENT
    • SATELLITE ORBITS
    • Sag
    • BASIC PRINCIPLE OF POSITION FIXING
    • ERRORS IN TAPING
    • DIFFERENCING DATA
    • Tension,Sag and Slope
    • GPS OBSERVING METHODS
    • ELECTROMAGNETIC DISTANCE MEASUREMENT (EDM)
    • Kinematic positioning
    • ERROR SOURCES
    • Global datums
    • GPS SYSTEM FUTURE
    • DATUM TRANSFORMATIONS
    • GALILEO
    • ORTHOMORPHIC PROJECTION
    • APPLICATIONS
    • ORDNANCE SURVEY NATIONAL GRID
    • (t – T) correction
    • PRACTICAL APPLICATIONS
    • Contouring
    • HEIGHTING WITH GPS

  • Theodolite Surveying
    • PLANE RECTANGULAR COORDINATES
    • PRINCIPLE OF LEAST SQUARES
    • PRINCIPLE OF LEAST SQUARES
    • TRAVERSING
    • LINEARIZATION
    • LEAST SQUARES APPLIED TO SURVEYING
    • Reconnaissance
    • NETWORKS
    • LINEARIZATION
    • Sources of error
    • Traverse computation
    • TRIANGULATION
    • Resection and intersection
    • Resection
    • NETWORKS
    • INSTRUMENT ADJUSTMENT
    • FIELD PROCEDURE
    • Setting up using the optical plumb-bob
    • MEASURING ANGLES
    • Measurement by directions
    • SOURCES OF ERROR

  • Simple Curves
    • CIRCULAR CURVES
    • Plotted areas
    • RESPONSIBILITY ON SITE
    • PHOTOGRAMMETRY
    • SETTING OUT CURVES
    • PARTITION OF LAND
    • COMPOUND AND REVERSE CURVES
    • CROSS-SECTIONS
    • SHORT AND/OR SMALL-RADIUS CURVES
    • VOLUMES
    • TRANSITION CURVES
    • Effect of curvature on volumes
    • Centrifugal ratio
    • MASS-HAUL DIAGRAMS
    • CONTROLLING VERTICALITY
    • The equation of motion
    • Coefficient of friction
    • CONTROLLING GRADING EXCAVATION
    • Sources of error
    • SETTING-OUT DATA
    • ROUTE LOCATION
    • LINE AND LEVEL
    • Highway transition curve tables (metric)
    • THE OSCULATING CIRCLE
    • Transitions joining arcs of different radii (compound curves)
    • Coordinates on the transition spiral
    • VERTICAL CURVES
    • Vertical curve design
    • Sight distances
    • Permissible approximations in vertical curve computation

Branch : Civil Engineering
Subject : Surveying-I
Unit : INTRODUCTION OF SURVEYING

PLOTTING DETAIL


Description:

In the past, detail would have been plotted on paper or a more stable medium such as plastic film. However, today all practical ‘plotting’is computer based and there is now an abundance of computer plotting software available that will not only produce a contour plot but also supply three-dimensional views, digital ground models, earthwork volumes, road design, drainage design, perspective views, etc.

 

Computer systems:
To be economically viable, practically all major engineering/surveying organizations use an automated plotting system. Very often the total station and data logger are purchased along with the computer hardware and software as a total operating system. In this way interface and adaptation problems are precluded. Figure  shows a computer driven plotter which is networked to the system and located separately.

 


The essential characteristics of such a system are:
(1) Capability to accept, store, transfer, process and manage field data that is input manually or directly from an interfaced data logger (Figure 1.12).
(2) Software and hardware are in modular form for easy access.
(3) Software will use all modern facilities, such as ‘windows’, different colour and interactive screen graphics, to make the process user friendly.
(4) Continuous data flow from field data to finished plan.
(5) Appropriate database facility for the storage and management of coordinate and cartographic data necessary for the production of DGMs and land/geographic information systems.
(6) Extensive computer storage facility.
(7) High-speed precision flat-bed or drum plotter.

 

Digital ground model (DGM):
ADGM is a three-dimensional, mathematical representation of the landform and all its features, stored in a computer database. Such a model is extremely useful in the design and construction process, as it permits quick and accurate determination of the coordinates and elevation of any point. The DGM is formed by sampling points over the land surface and using appropriate algorithms to process these points to represent the surface being modelled. The methods in common use are modelling by ‘strings’, ‘regular grids’ or ‘triangulated irregular networks’. Regardless of the methods used, they will all reflect the quality of the field data.

 

‘string’ comprises a series of points along a feature and so such a system stores the position of features surveyed. The system is widely used for mapping purposes due to its flexibility, accuracy along the string and the ability to process large amounts of data very quickly. However, as the system does not store the relationship between strings, a searching process is essential when the levels of points not included in a string are required. Thus the system’s weakness lies in the generation of accurate contours and volumes.

 

(a) Triangular grid model, and (b) Triangular grid model with computer shading

Computer generated contour model

 

 

the triangles. It is thus ideal for contour generation  and computing highly accurate volumes. The volumes may be obtained by treating each triangle as a prism to the depth required; hence the smaller the triangle, the more accurate the final result.

Questions of this topic


  • DESCRIBE PLOTTING DETAIL?

    Answer this
Ask your question

<
>