FE-Logo
  • Home
  • Study Material
  • INTRODUCTION OF SURVEYING
    • INTRODUCTION
    • REFERENCE ELLIPSOID
    • BASIC MEASUREMENTS
    • The geoid
    • PROTECTION AND REFERENCING
    • CONTROL NETWORKS
    • The ellipsoid
    • BASIC SETTING-OUT PROCEDURES USING COORDINATES
    • LOCATING POSITION
    • COORDINATE SYSTEMS
    • USE OF GRIDS
    • PLOTTING DETAIL
    • Geodetic coordinates
    • SETTING OUT BUILDINGS
    • Computer-aided design (CAD)
    • Cartesian coordinates
    • Error and uncertainty
    • Plane rectangular coordinates
    • SIGNIFICANT FIGURES
    • Height
    • ERRORS IN MEASUREMENT
    • WEIGHT MATRIX
    • LOCAL SYSTEMS
    • Probability
    • ERROR ANALYSIS
    • Deviation of the vertical
    • INDICES OF PRECISION
    • VARIANCE-COVARIANCE MATRIX OF THE PARAMETERS
    • COMPUTATION ON THE ELLIPSOID
    • COMBINATION OF ERRORS
    • Uncertainty of addition or subtraction
    • Eigenvalues, eigenvectors and error ellipses
    • BLUNDER DETECTION
    • RELIABILITY OF THE OBSERVATIONS
    • PRACTICAL CONSIDERATIONS
    • ESTIMATION IN THREE DIMENSIONS

  • LEVELLING
    • LEVELLING
    • OPTICAL METHODS
    • CURVATURE AND REFRACTION
    • MECHANICAL METHODS
    • EQUIPMENT
    • Weiss quadrilateral
    • INSTRUMENT ADJUSTMENT
    • PARAMETER VECTOR
    • Single wires in two shafts
    • Automatic level
    • DESIGN MATRIX AND OBSERVATIONS VECTOR
    • GYRO-THEODOLITE
    • PRINCIPLE OF LEVELLING
    • Plan network
    • SOURCES OF ERROR
    • Distance equation
    • LEVELLING APPLICATIONS
    • Direction & Angle equation
    • Direct and Indirect contouring
    • Controlling earthworks
    • RECIPROCAL LEVELLING
    • PRECISE LEVELLING
    • Parallel plate micrometer
    • ERROR ELLIPSES
    • Field procedure
    • Booking and computing
    • DIGITAL LEVELLING
    • Factors affecting the measuring procedure
    • TRIGONOMETRICAL LEVELLING

  • CONTOURING
    • TAPES
    • Introduction of Satellite positioning
    • FIELD WORK
    • GPS SEGMENTS
    • Measuring in catenary
    • GPS
    • DISTANCE ADJUSTMENT
    • SATELLITE ORBITS
    • Sag
    • BASIC PRINCIPLE OF POSITION FIXING
    • ERRORS IN TAPING
    • DIFFERENCING DATA
    • Tension,Sag and Slope
    • GPS OBSERVING METHODS
    • ELECTROMAGNETIC DISTANCE MEASUREMENT (EDM)
    • Kinematic positioning
    • ERROR SOURCES
    • Global datums
    • GPS SYSTEM FUTURE
    • DATUM TRANSFORMATIONS
    • GALILEO
    • ORTHOMORPHIC PROJECTION
    • APPLICATIONS
    • ORDNANCE SURVEY NATIONAL GRID
    • (t – T) correction
    • PRACTICAL APPLICATIONS
    • Contouring
    • HEIGHTING WITH GPS

  • Theodolite Surveying
    • PLANE RECTANGULAR COORDINATES
    • PRINCIPLE OF LEAST SQUARES
    • PRINCIPLE OF LEAST SQUARES
    • TRAVERSING
    • LINEARIZATION
    • LEAST SQUARES APPLIED TO SURVEYING
    • Reconnaissance
    • NETWORKS
    • LINEARIZATION
    • Sources of error
    • Traverse computation
    • TRIANGULATION
    • Resection and intersection
    • Resection
    • NETWORKS
    • INSTRUMENT ADJUSTMENT
    • FIELD PROCEDURE
    • Setting up using the optical plumb-bob
    • MEASURING ANGLES
    • Measurement by directions
    • SOURCES OF ERROR

  • Simple Curves
    • CIRCULAR CURVES
    • Plotted areas
    • RESPONSIBILITY ON SITE
    • PHOTOGRAMMETRY
    • SETTING OUT CURVES
    • PARTITION OF LAND
    • COMPOUND AND REVERSE CURVES
    • CROSS-SECTIONS
    • SHORT AND/OR SMALL-RADIUS CURVES
    • VOLUMES
    • TRANSITION CURVES
    • Effect of curvature on volumes
    • Centrifugal ratio
    • MASS-HAUL DIAGRAMS
    • CONTROLLING VERTICALITY
    • The equation of motion
    • Coefficient of friction
    • CONTROLLING GRADING EXCAVATION
    • Sources of error
    • SETTING-OUT DATA
    • ROUTE LOCATION
    • LINE AND LEVEL
    • Highway transition curve tables (metric)
    • THE OSCULATING CIRCLE
    • Transitions joining arcs of different radii (compound curves)
    • Coordinates on the transition spiral
    • VERTICAL CURVES
    • Vertical curve design
    • Sight distances
    • Permissible approximations in vertical curve computation

Branch : Civil Engineering
Subject : Surveying-I
Unit : INTRODUCTION OF SURVEYING

PROTECTION AND REFERENCING


Description:

Most site operatives have little concept of the time, effort and expertise involved in establishing setting-out pegs. For this reason the pegs are frequently treated with disdain and casually destroyed in the construction process. A typical example of this is the centre-line pegs for route location which are the first to be destroyed when earth-moving commences.

It is important, therefore, that control stations and BMs should be protected in some way  and site operatives, particularly earthwork personnel, impressed with the importance of maintaining this protection. Where destruction of the pegs is inevitable, then referencing procedures should be adopted to relocate their positions to the original accuracy of fixation.

 

Various configurations of reference pegs are used and the one thing that they have in common is that they must be set well outside the area of construction and have some form of protection,  Acommonly-used method of referencing is from four pegs (A, B,C, D) established such that two strings stretched between them intersect to locate the required position . Distances AB, BC, CD, AD, AC, BD should all be measured as checks on the possible movement of the reference pegs, whilst distances from the reference pegs to the setting-out peg will afford a check on positioning. Ideally TP1 should be in line with DB and AC. Intersecting lines of sight from theodolites at, say, A and B may be used where ground conditions make string lining difficult.

 

 

Control point protection

 

 

Control point reference pegs

 

 

 

Although easy to construct, wooden pegs are easily damaged.Amore stable and precise control station mark that is easily constructed on site . A steel or brass plate with fine but deeply engraved lines crossing at right angles is set with Hilti nails into a cube of concrete cast into a freshly dug hole. To avoid any possible movement of the plate there should be a layer of epoxy resin between it and the concrete.

Control point

Questions of this topic


  • DESCRIBRE PROTECTION AND REFERENCING?

    Answer this
Ask your question

<
>