FE-Logo
  • Home
  • Study Material
  • INTRODUCTION OF SURVEYING
    • INTRODUCTION
    • REFERENCE ELLIPSOID
    • BASIC MEASUREMENTS
    • The geoid
    • PROTECTION AND REFERENCING
    • CONTROL NETWORKS
    • The ellipsoid
    • BASIC SETTING-OUT PROCEDURES USING COORDINATES
    • LOCATING POSITION
    • COORDINATE SYSTEMS
    • USE OF GRIDS
    • PLOTTING DETAIL
    • Geodetic coordinates
    • SETTING OUT BUILDINGS
    • Computer-aided design (CAD)
    • Cartesian coordinates
    • Error and uncertainty
    • Plane rectangular coordinates
    • SIGNIFICANT FIGURES
    • Height
    • ERRORS IN MEASUREMENT
    • WEIGHT MATRIX
    • LOCAL SYSTEMS
    • Probability
    • ERROR ANALYSIS
    • Deviation of the vertical
    • INDICES OF PRECISION
    • VARIANCE-COVARIANCE MATRIX OF THE PARAMETERS
    • COMPUTATION ON THE ELLIPSOID
    • COMBINATION OF ERRORS
    • Uncertainty of addition or subtraction
    • Eigenvalues, eigenvectors and error ellipses
    • BLUNDER DETECTION
    • RELIABILITY OF THE OBSERVATIONS
    • PRACTICAL CONSIDERATIONS
    • ESTIMATION IN THREE DIMENSIONS

  • LEVELLING
    • LEVELLING
    • OPTICAL METHODS
    • CURVATURE AND REFRACTION
    • MECHANICAL METHODS
    • EQUIPMENT
    • Weiss quadrilateral
    • INSTRUMENT ADJUSTMENT
    • PARAMETER VECTOR
    • Single wires in two shafts
    • Automatic level
    • DESIGN MATRIX AND OBSERVATIONS VECTOR
    • GYRO-THEODOLITE
    • PRINCIPLE OF LEVELLING
    • Plan network
    • SOURCES OF ERROR
    • Distance equation
    • LEVELLING APPLICATIONS
    • Direction & Angle equation
    • Direct and Indirect contouring
    • Controlling earthworks
    • RECIPROCAL LEVELLING
    • PRECISE LEVELLING
    • Parallel plate micrometer
    • ERROR ELLIPSES
    • Field procedure
    • Booking and computing
    • DIGITAL LEVELLING
    • Factors affecting the measuring procedure
    • TRIGONOMETRICAL LEVELLING

  • CONTOURING
    • TAPES
    • Introduction of Satellite positioning
    • FIELD WORK
    • GPS SEGMENTS
    • Measuring in catenary
    • GPS
    • DISTANCE ADJUSTMENT
    • SATELLITE ORBITS
    • Sag
    • BASIC PRINCIPLE OF POSITION FIXING
    • ERRORS IN TAPING
    • DIFFERENCING DATA
    • Tension,Sag and Slope
    • GPS OBSERVING METHODS
    • ELECTROMAGNETIC DISTANCE MEASUREMENT (EDM)
    • Kinematic positioning
    • ERROR SOURCES
    • Global datums
    • GPS SYSTEM FUTURE
    • DATUM TRANSFORMATIONS
    • GALILEO
    • ORTHOMORPHIC PROJECTION
    • APPLICATIONS
    • ORDNANCE SURVEY NATIONAL GRID
    • (t – T) correction
    • PRACTICAL APPLICATIONS
    • Contouring
    • HEIGHTING WITH GPS

  • Theodolite Surveying
    • PLANE RECTANGULAR COORDINATES
    • PRINCIPLE OF LEAST SQUARES
    • PRINCIPLE OF LEAST SQUARES
    • TRAVERSING
    • LINEARIZATION
    • LEAST SQUARES APPLIED TO SURVEYING
    • Reconnaissance
    • NETWORKS
    • LINEARIZATION
    • Sources of error
    • Traverse computation
    • TRIANGULATION
    • Resection and intersection
    • Resection
    • NETWORKS
    • INSTRUMENT ADJUSTMENT
    • FIELD PROCEDURE
    • Setting up using the optical plumb-bob
    • MEASURING ANGLES
    • Measurement by directions
    • SOURCES OF ERROR

  • Simple Curves
    • CIRCULAR CURVES
    • Plotted areas
    • RESPONSIBILITY ON SITE
    • PHOTOGRAMMETRY
    • SETTING OUT CURVES
    • PARTITION OF LAND
    • COMPOUND AND REVERSE CURVES
    • CROSS-SECTIONS
    • SHORT AND/OR SMALL-RADIUS CURVES
    • VOLUMES
    • TRANSITION CURVES
    • Effect of curvature on volumes
    • Centrifugal ratio
    • MASS-HAUL DIAGRAMS
    • CONTROLLING VERTICALITY
    • The equation of motion
    • Coefficient of friction
    • CONTROLLING GRADING EXCAVATION
    • Sources of error
    • SETTING-OUT DATA
    • ROUTE LOCATION
    • LINE AND LEVEL
    • Highway transition curve tables (metric)
    • THE OSCULATING CIRCLE
    • Transitions joining arcs of different radii (compound curves)
    • Coordinates on the transition spiral
    • VERTICAL CURVES
    • Vertical curve design
    • Sight distances
    • Permissible approximations in vertical curve computation

Branch : Civil Engineering
Subject : Surveying-I
Unit : CONTOURING

BASIC PRINCIPLE OF POSITION FIXING


Description:

Position fixing in three dimensions may involve the measurement of distance (or range) to at least three satellites whose X, Y and Z position is known, in order to define the user’s Xp, Yp and Zp position. In its simplest form, the satellite transmits a signal on which the time of its departure (tD) from the satellite is modulated. The receiver in turn notes the time of arrival (tA) of this time mark. Then the time which it took the signal to go from satellite to receiver is (tA − tD) = t called the delay time. The measured range R is obtained from


R1 = (tA − tD)c = tc


where c = the velocity of light.


Whilst the above describes the basic principle of range measurement, to achieve it one would require the receiver to have a clock as accurate as the satellite’s and perfectly synchronized with it. As this would render the receiver impossibly expensive, a correlation procedure, using the pseudo-random binary codes (P or C/A), usually ‘C/A’, is adopted. The signal from the satellite arrives at the receiver and triggers the receiver to commence generating its own internal copy of the C/A code. The receiver-generated code is cross-correlated with the satellite code (Figure 9.10). The ground receiver is then able to determine the time delay ( t) since it generated the same portion of the code received from the satellite. However, whilst this eliminates the problem of the need for an expensive receiver clock, it does not eliminate the problem of exact synchronization of the two clocks. Thus, the time difference between the two clocks, termed clock bias, results in an incorrect assessment of t. The distances computed are therefore called ‘pseudo-ranges’. The use of four satellites rather than three, however, can eliminate the effect of clock bias. A line in space is defined by its difference in coordinates in an X, Y and Z system:

If the error in R, due to clock bias, is δR and is constant throughout, then:

 

 

where Xn, Yn, Zn = the coordinates of satellites 1, 2, 3 and 4 (n = 1 to 4)


Xp, Yp, Zp = the coordinates required for point P


Rn = the measured ranges to the satellites


Solving the four equations for the four unknowns Xp, Yp, Zp and δR also solves for the error due to clock bias.

Correlation of the pseudo-binary codes

Whilst the use of pseudo-range is sufficient for navigational purposes and constitutes the fundamental approach for which the system was designed, a much more accurate measurement of range is required for positioning in engineering surveying. Measuring phase difference by means of the carrier wave in a manner analogous to EDM measurement does this. As observational resolution is about 1% of the signal wavelength λ, the following table shows the reason for using the carrier waves; this is referred to as the carrier phase observable.

Carrier phase is the difference between the incoming satellite carrier signal and the phase of the constantfrequency signal generated by the receiver. It should be noted that the satellite carrier signal when it arrives at the receiver is different from that initially transmitted, because of the relative velocity between transmitter and receiver; this is the well-known Doppler effect. The carrier phase therefore changes according to the continuously integrated Doppler shift of the incoming signal. This observable is biased by the unknown offset between the satellite and receiver clocks and represents the difference in range to the satellite at different times or epochs. The carrier phase movement, although analogous to EDM measurement, is a one-way measuring system, and thus the number of whole wavelengths (N) at lock-on is missing; this is referred to as the integer or phase ambiguity. The value of N can be obtained from GPS network adjustment or from double differencing or eliminated by triple differencing.

Questions of this topic


  • DESCRIBE BASIC PRINCIPLE OF POSITION FIXING?

    Answer this
Ask your question

<
>