FE-Logo
  • Home
  • Study Material
  • Non-Deterministic Finite Automation
    • Introduction to Compiler
    • The Structure of a Compiler
    • Intermediate Code Generation
    • Building a Compiler
    • Applications of Compiler
    • Optimizations for Computer Architectures
    • Design of New Computer Architectures
    • Program Translations
    • Software Productivity Tools
    • Programming Language Basics
    • Minimisation of DFAs
    • Explicit Access Control
    • Parameter Passing Mechanisms
    • Introduction to Lexical Analysis
    • Regular expressions
    • Short hands
    • Nondeterministic finite automata
    • Converting a regular expression to an NFA
    • Deterministic finite automata
    • Converting an NFA to a DFA
    • The subset construction
    • Dead states
    • Lexers and lexer generators
    • Splitting the input stream
    • Lexical errors
    • Properties of regular languages
    • Limits to expressive power
    • The Role of the Lexical Analyzer
    • Input Buffering
    • Specification of Tokens
    • Operations on Languages
    • Regular Definitions and Extensions
    • Recognition of Tokens
    • The Lexical-Analyzer Generator Lex
    • Finite Automata
    • Construction of an NFA from a Regular Expression
    • Efficiency of String-Processing Algorithms
    • The Structure of the Generated Analyzer
    • Optimization of DFA-Based Pattern Matchers

  • Basic Parsing Techniques
    • Introduction to Syntax analysis
    • Context-free grammars
    • Writing context free grammars
    • Derivation
    • Syntax trees and ambiguity
    • Operator precedence
    • Writing ambiguous expression grammars
    • Other sources of ambiguity
    • Syntax analysis and Predictive parsing
    • Nullable and FIRST
    • Predictive parsing revisited
    • FOLLOW
    • LL(1) parsing
    • Methods for rewriting grammars for LL(1) parsing
    • SLR parsing
    • Constructions of SLR parse tables
    • Conflicts in SLR parse-tables
    • Using precedence rules in LR parse tables
    • Using LR-parser generators
    • Properties of context-free languages
    • Introduction to Syntax-Directed Translator
    • Evaluating an SDD at the Nodes of a Parse Tree
    • Evaluation Orders for SDD\'s
    • Ordering the Evaluation of Attributes
    • A larger example of calculating FIRST and FOLLOW
    • Syntax Definition
    • Associativity of Operators
    • Parse Trees
    • Ambiguity
    • Syntax-Directed Translation
    • Synthesized Attributes
    • Tree Traversals
    • Parsing
    • Predictive Parsing
    • Use e-Productions
    • Translator for Simple Expressions
    • Semantic Rules with Controlled Side Effects
    • Applications of Syntax-Directed Translation
    • The Structure of a Type of syntax
    • Switch-Statements
    • Syntax-Directed Translation Schemes
    • Postfix Translation Schemes
    • SDT\'s With Actions Inside Productions
    • Eliminating Left Recursion from SDT\'s
    • SDT\'s for L-Attributed Definitions
    • Implementing L-Attributed SDD\'s
    • On-The-Fly Code Generation
    • L-Attributed SDD\'s and LL Parsing
    • Bottom-Up Parsing of L-Attributed SDD\'s

  • Syntax-directed Translation
    • Register Allocation and Assignment
    • Semantic Analysis
    • Introduction to Intermediate Code Generation
    • Variants of Syntax Trees
    • Variants of Syntax Trees
    • The Value-Number Method for Constructing DAG\'s
    • Three-Address Code
    • Quadruples
    • Triples
    • Static Single-Assignment Form
    • Types and Declarations
    • Type Equivalence
    • Sequences of Declarations
    • Translation of Expressions
    • Incremental Translation
    • Addressing Array Elements
    • Translation of Array References
    • Type Checking
    • Type Conversions
    • Overloading of Functions and Operators
    • Type Inference and Polymorphic Functions
    • Algorithm for Unification
    • Control Flow
    • Flow-of-Control Statements
    • Control-Flow Translation of Boolean Expressions
    • Boolean Values and Jumping Code
    • Back patching
    • Backpatching for Boolean Expressions
    • Flow-of-Control Statements
    • Break-, Continue-, and Goto-Statements
    • Introduction to Run-Time Environments
    • Stack Allocation of Space
    • Activation Records
    • Calling Sequences
    • Variable-Length Data on the Stack
    • Access to Nonlocal Data on the Stack
    • Displays
    • Heap Management
    • Locality in Programs
    • Reducing Fragmentation
    • Managing and Coalescing Free Space
    • Manual Deallocation Requests
    • Reachability
    • Introduction to Garbage Collection
    • Reference Counting Garbage Collectors
    • Introduction to Trace-Based Collection
    • Basic Abstraction
    • Optimizing Mark-and-Sweep
    • Mark-and-Compact Garbage Collectors
    • Copying collectors
    • Short-Pause Garbage Collection
    • Incremental Reachability Analysis
    • Partial-Collection Basics
    • The Train Algorithm
    • Parallel and Concurrent Garbage Collection
    • Partial Object Relocation
    • Introduction Code Generation
    • Issues in the Design of a Code Generator
    • Instruction Selection
    • Register Allocation
    • The Target Language
    • Addresses in the Target Code
    • Stack Allocation
    • Run-Time Addresses for Names
    • Basic Blocks and Flow Graphs
    • Basic Blocks
    • Next-Use Information
    • Representation of Flow Graphs
    • Optimization of Basic Blocks
    • Dead Code Elimination
    • Representation of Array References
    • Pointer Assignments and Procedure Calls
    • A Simple Code Generator
    • The Code-Generation Algorithm
    • Design of the Function getReg
    • Peephole Optimization
    • Algebraic Simplification and Reduction in Strength
    • Register Assignment for Outer Loops
    • Instruction Selection by Tree Rewriting
    • Code Generation by Tiling an Input Tree
    • Pattern Matching by Parsing
    • General Tree Matching
    • Optimal Code Generation for Expressions
    • Evaluating Expressions with an Insufficient Supply of Registers
    • Dynamic Programming Code-Generation

  • Data Flow Analysis
    • The Lazy-Code-Motion Algorithm
    • Introduction to Machine-Independent Optimizations
    • The Dynamic Programming Algorithm
    • The Principal Sources of Optimization
    • Semantics-Preserving Transformations
    • Copy Propagation
    • Induction Variables and Reduction in Strength
    • Introduction to Data-Flow Analysis
    • The Data-Flow Analysis Schema
    • Reaching Definitions
    • Live-Variable Analysis
    • Available Expressions
    • Foundations of Data-Flow Analysis
    • Transfer Functions
    • The Iterative Algorithm for General Frameworks
    • Meaning of a Data-Flow Solution
    • Constant Propagation
    • Transfer Functions for the Constant-Propagation Framework
    • Partial-Redundancy Elimination
    • The Lazy-Code-Motion Problem
    • Loops in Flow Graphs
    • Depth-First Ordering
    • Back Edges and Reducibility
    • Natural Loops
    • Speed of Convergence of Iterative Data-Flow Algorithms
    • Region-Based Analysis
    • Necessary Assumptions About Transfer Functions
    • An Algorithm for Region-Based Analysis
    • Handling Non-reducible Flow Graphs
    • Symbolic Analysis
    • Data-Flow Problem Formulation
    • Region-Based Symbolic Analysis

  • Code Generation
    • Introduction to Software Pipelining of Loops
    • Matrix Multiply: An In-Depth Example
    • Software Pipelining of Loops
    • Introduction Instruction-Level Parallelism
    • Multiple Instruction Issue
    • A Basic Machine Model
    • Code-Scheduling Constraints
    • Finding Dependences Among Memory Accesses
    • Phase Ordering Between Register Allocation and Code Scheduling
    • Speculative Execution Support
    • Basic-Block Scheduling
    • List Scheduling of Basic Blocks
    • Global Code Scheduling
    • Upward Code Motion
    • Updating Data Dependences
    • Advanced Code Motion Techniques
    • Software Pipelining
    • Register Allocation and Code Generation
    • A Software-Pipelining Algorithm
    • Scheduling Cyclic Dependence Graphs
    • Improvements to the Pipelining Algorithms
    • Conditional Statements and Hardware Support for Software Pipelining
    • Basic Concepts of Parallelism and Locality
    • Parallelism in Applications
    • Loop-Level Parallelism
    • Introduction to Affine Transform Theory
    • Optimizations
    • Iteration Spaces
    • Affine Array Indexes
    • Controlling the Order of Execution
    • Changing Axes
    • Intermediate Code for Procedures
    • Data Reuse
    • Self Reuse
    • Self-Spatial Reuse
    • Array Data-Dependence Analysis
    • Integer Linear Programming
    • Heuristics for Solving Integer Linear Programs
    • Solving General Integer Linear Programs
    • Finding Synchronization-Free Parallelism
    • Affine Space Partitions
    • Space-Partition Constraints
    • Solving Space-Partition Constraints
    • A Simple Code-Generation Algorithm
    • Eliminating Empty Iterations
    • Synchronization Between Parallel Loops
    • The Parallelization Algorithm and Hierarchical Time
    • Pipelining
    • Solving Time-Partition Constraints by Farkas' Lemma
    • Code Transformations
    • Parallelism With Minimum Synchronization
    • Locality Optimizations
    • Partition Interleaving
    • Putting it All Together
    • Uses of Affine Transforms
    • Interprocedural Analysis
    • Context Sensitivity
    • Cloning-Based Context-Sensitive Analysis
    • Importance of Interprocedural Analysis
    • SQL Injection
    • A Logical Representation of Data Flow
    • Execution of Datalog Programs
    • Problematic Datalog Rules
    • A Simple Pointer-Analysis Algorithm
    • Flow Insensitivity
    • Context-Insensitive Interprocedural Analysis
    • Context-Sensitive Pointer Analysis
    • Adding Context to Datalog Rules
    • Datalog Implementation by BDD's
    • Relational Operations as BDD Operations

Branch : Computer Science and Engineering
Subject : Compiler design
Unit : Non-Deterministic Finite Automation

The Role of the Lexical Analyzer


Lexical Analysis versus Parsing: There are a number of reasons why the analysis portion of a compiler is normally separated into lexical analysis and parsing (syntax analysis) phases.

  1. Simplicity of design is the most important consideration. The separation of lexical and syntactic analysis often allows us to simplify at least one of these tasks. For example, a parser that had to deal with comments and whitespace as syntactic units would be considerably more complex than one that can assume comments and whitespace have already been removed by the lexical analyzer. If we are designing a new language, separating lexical and syntactic concerns can lead to a cleaner overall language design.
  2. Compiler efficiency is improved. A separate lexical analyzer allows us to apply specialized techniques that serve only the lexical task, not the job of parsing. In addition, specialized buffering techniques for reading input characters can speed up the compiler significantly.
  3. Compiler portability is enhanced. Input-device-specific peculiarities can be restricted to the lexical analyzer.

Tokens, Patterns, and Lexemes: When discussing lexical analysis, we use three related but distinct terms:

  • A token is a pair consisting of a token name and an optional attribute value. The token name is an abstract symbol representing a kind of lexical unit, e.g., a particular keyword, or a sequence of input characters denoting an identifier. The token names are the input symbols that the parser processes. In what follows, we shall generally write the name of a token in boldface. We will often refer to a token by its token name.
  • A pattern is a description of the form that the lexemes of a token may take. In the case of a keyword as a token, the pattern is just the sequence of characters that form the keyword. For identifiers and some other tokens, the pattern is a more complex structure that is matched by many strings.
  • A lexeme is a sequence of characters in the source program that matches the pattern for a token and is identified by the lexical analyzer as an instance of that token.

Attributes for Tokens: When more than one lexeme can match a pattern, the lexical analyzer must provide the subsequent compiler phase’s additional information about the particular lexeme that matched. For example, the pattern for token number matches both 0 and 1, but it is extremely important for the code generator to know which lexeme was found in the source program. Thus, in many cases the lexical analyzer returns to the parser not only a token name, but an attribute value that describes the lexeme represented by the token; the token name influences parsing decisions, while the attribute value influences translation of tokens after the parse.

We shall assume that tokens have at most one associated attribute, although this attribute may have a structure that combines several pieces of information. The most important example is the token id, where we need to associate with the token a great deal of information. Normally, information about an identifier — e.g., its lexeme, its type, and the location at which it is first found (in case an error message about that identifier must be issued) — is kept in the symbol table. Thus, the appropriate attribute value for an identifier is a pointer to the symbol-table entry for that identifier.

Lexical Errors: It is hard for a lexical analyzer to tell, without the aid of other components,that there is a source-code error. For instance, if the string f i is encounteredfor the first time in a C program in the context:

f i ( a == f ( x ) ) . ..

a lexical analyzer cannot tell whether f i is a misspelling of the keyword if or an undeclared function identifier. Since f i is a valid lexeme for the token id, the lexical analyzer must return the token id to the parser and let some other phase of the compiler — probably the parser in this case — handle an error due to transposition of the letters.

However, suppose a situation arises in which the lexical analyzer is unable to proceed because none of the patterns for tokens matches any prefix of the remaining input. The simplest recovery strategy is "panic mode" recovery. We delete successive characters from the remaining input, until the lexical analyzer can find a well-formed token at the beginning of what input is left. This recovery technique may confuse the parser, but in an interactive computing environment it may be quite adequate.

1.       Other possible error-recovery actions are:

2.       Delete one character from the remaining input.

3.       Insert a missing character into the remaining input.

4.       Replace a character by another character.

5.       Transpose two adjacent characters.

Transformations like these may be tried in an attempt to repair the input. The simplest such strategy is to see whether a prefix of the remaining input can be transformed into a valid lexeme by a single transformation. This strategy makes sense, since in practice most lexical errors involve a single character. A more general correction strategy is to find the smallest number of transformations needed to convert the source program into one that consists only of valid lexemes, but this approach is considered too expensive in practice to be worth the effort.

Questions of this topic


Ask your question

<
>