FE-Logo
  • Home
  • Study Material
  • Non-Deterministic Finite Automation
    • Introduction to Compiler
    • The Structure of a Compiler
    • Intermediate Code Generation
    • Building a Compiler
    • Applications of Compiler
    • Optimizations for Computer Architectures
    • Design of New Computer Architectures
    • Program Translations
    • Software Productivity Tools
    • Programming Language Basics
    • Minimisation of DFAs
    • Explicit Access Control
    • Parameter Passing Mechanisms
    • Introduction to Lexical Analysis
    • Regular expressions
    • Short hands
    • Nondeterministic finite automata
    • Converting a regular expression to an NFA
    • Deterministic finite automata
    • Converting an NFA to a DFA
    • The subset construction
    • Dead states
    • Lexers and lexer generators
    • Splitting the input stream
    • Lexical errors
    • Properties of regular languages
    • Limits to expressive power
    • The Role of the Lexical Analyzer
    • Input Buffering
    • Specification of Tokens
    • Operations on Languages
    • Regular Definitions and Extensions
    • Recognition of Tokens
    • The Lexical-Analyzer Generator Lex
    • Finite Automata
    • Construction of an NFA from a Regular Expression
    • Efficiency of String-Processing Algorithms
    • The Structure of the Generated Analyzer
    • Optimization of DFA-Based Pattern Matchers

  • Basic Parsing Techniques
    • Introduction to Syntax analysis
    • Context-free grammars
    • Writing context free grammars
    • Derivation
    • Syntax trees and ambiguity
    • Operator precedence
    • Writing ambiguous expression grammars
    • Other sources of ambiguity
    • Syntax analysis and Predictive parsing
    • Nullable and FIRST
    • Predictive parsing revisited
    • FOLLOW
    • LL(1) parsing
    • Methods for rewriting grammars for LL(1) parsing
    • SLR parsing
    • Constructions of SLR parse tables
    • Conflicts in SLR parse-tables
    • Using precedence rules in LR parse tables
    • Using LR-parser generators
    • Properties of context-free languages
    • Introduction to Syntax-Directed Translator
    • Evaluating an SDD at the Nodes of a Parse Tree
    • Evaluation Orders for SDD\'s
    • Ordering the Evaluation of Attributes
    • A larger example of calculating FIRST and FOLLOW
    • Syntax Definition
    • Associativity of Operators
    • Parse Trees
    • Ambiguity
    • Syntax-Directed Translation
    • Synthesized Attributes
    • Tree Traversals
    • Parsing
    • Predictive Parsing
    • Use e-Productions
    • Translator for Simple Expressions
    • Semantic Rules with Controlled Side Effects
    • Applications of Syntax-Directed Translation
    • The Structure of a Type of syntax
    • Switch-Statements
    • Syntax-Directed Translation Schemes
    • Postfix Translation Schemes
    • SDT\'s With Actions Inside Productions
    • Eliminating Left Recursion from SDT\'s
    • SDT\'s for L-Attributed Definitions
    • Implementing L-Attributed SDD\'s
    • On-The-Fly Code Generation
    • L-Attributed SDD\'s and LL Parsing
    • Bottom-Up Parsing of L-Attributed SDD\'s

  • Syntax-directed Translation
    • Register Allocation and Assignment
    • Semantic Analysis
    • Introduction to Intermediate Code Generation
    • Variants of Syntax Trees
    • Variants of Syntax Trees
    • The Value-Number Method for Constructing DAG\'s
    • Three-Address Code
    • Quadruples
    • Triples
    • Static Single-Assignment Form
    • Types and Declarations
    • Type Equivalence
    • Sequences of Declarations
    • Translation of Expressions
    • Incremental Translation
    • Addressing Array Elements
    • Translation of Array References
    • Type Checking
    • Type Conversions
    • Overloading of Functions and Operators
    • Type Inference and Polymorphic Functions
    • Algorithm for Unification
    • Control Flow
    • Flow-of-Control Statements
    • Control-Flow Translation of Boolean Expressions
    • Boolean Values and Jumping Code
    • Back patching
    • Backpatching for Boolean Expressions
    • Flow-of-Control Statements
    • Break-, Continue-, and Goto-Statements
    • Introduction to Run-Time Environments
    • Stack Allocation of Space
    • Activation Records
    • Calling Sequences
    • Variable-Length Data on the Stack
    • Access to Nonlocal Data on the Stack
    • Displays
    • Heap Management
    • Locality in Programs
    • Reducing Fragmentation
    • Managing and Coalescing Free Space
    • Manual Deallocation Requests
    • Reachability
    • Introduction to Garbage Collection
    • Reference Counting Garbage Collectors
    • Introduction to Trace-Based Collection
    • Basic Abstraction
    • Optimizing Mark-and-Sweep
    • Mark-and-Compact Garbage Collectors
    • Copying collectors
    • Short-Pause Garbage Collection
    • Incremental Reachability Analysis
    • Partial-Collection Basics
    • The Train Algorithm
    • Parallel and Concurrent Garbage Collection
    • Partial Object Relocation
    • Introduction Code Generation
    • Issues in the Design of a Code Generator
    • Instruction Selection
    • Register Allocation
    • The Target Language
    • Addresses in the Target Code
    • Stack Allocation
    • Run-Time Addresses for Names
    • Basic Blocks and Flow Graphs
    • Basic Blocks
    • Next-Use Information
    • Representation of Flow Graphs
    • Optimization of Basic Blocks
    • Dead Code Elimination
    • Representation of Array References
    • Pointer Assignments and Procedure Calls
    • A Simple Code Generator
    • The Code-Generation Algorithm
    • Design of the Function getReg
    • Peephole Optimization
    • Algebraic Simplification and Reduction in Strength
    • Register Assignment for Outer Loops
    • Instruction Selection by Tree Rewriting
    • Code Generation by Tiling an Input Tree
    • Pattern Matching by Parsing
    • General Tree Matching
    • Optimal Code Generation for Expressions
    • Evaluating Expressions with an Insufficient Supply of Registers
    • Dynamic Programming Code-Generation

  • Data Flow Analysis
    • The Lazy-Code-Motion Algorithm
    • Introduction to Machine-Independent Optimizations
    • The Dynamic Programming Algorithm
    • The Principal Sources of Optimization
    • Semantics-Preserving Transformations
    • Copy Propagation
    • Induction Variables and Reduction in Strength
    • Introduction to Data-Flow Analysis
    • The Data-Flow Analysis Schema
    • Reaching Definitions
    • Live-Variable Analysis
    • Available Expressions
    • Foundations of Data-Flow Analysis
    • Transfer Functions
    • The Iterative Algorithm for General Frameworks
    • Meaning of a Data-Flow Solution
    • Constant Propagation
    • Transfer Functions for the Constant-Propagation Framework
    • Partial-Redundancy Elimination
    • The Lazy-Code-Motion Problem
    • Loops in Flow Graphs
    • Depth-First Ordering
    • Back Edges and Reducibility
    • Natural Loops
    • Speed of Convergence of Iterative Data-Flow Algorithms
    • Region-Based Analysis
    • Necessary Assumptions About Transfer Functions
    • An Algorithm for Region-Based Analysis
    • Handling Non-reducible Flow Graphs
    • Symbolic Analysis
    • Data-Flow Problem Formulation
    • Region-Based Symbolic Analysis

  • Code Generation
    • Introduction to Software Pipelining of Loops
    • Matrix Multiply: An In-Depth Example
    • Software Pipelining of Loops
    • Introduction Instruction-Level Parallelism
    • Multiple Instruction Issue
    • A Basic Machine Model
    • Code-Scheduling Constraints
    • Finding Dependences Among Memory Accesses
    • Phase Ordering Between Register Allocation and Code Scheduling
    • Speculative Execution Support
    • Basic-Block Scheduling
    • List Scheduling of Basic Blocks
    • Global Code Scheduling
    • Upward Code Motion
    • Updating Data Dependences
    • Advanced Code Motion Techniques
    • Software Pipelining
    • Register Allocation and Code Generation
    • A Software-Pipelining Algorithm
    • Scheduling Cyclic Dependence Graphs
    • Improvements to the Pipelining Algorithms
    • Conditional Statements and Hardware Support for Software Pipelining
    • Basic Concepts of Parallelism and Locality
    • Parallelism in Applications
    • Loop-Level Parallelism
    • Introduction to Affine Transform Theory
    • Optimizations
    • Iteration Spaces
    • Affine Array Indexes
    • Controlling the Order of Execution
    • Changing Axes
    • Intermediate Code for Procedures
    • Data Reuse
    • Self Reuse
    • Self-Spatial Reuse
    • Array Data-Dependence Analysis
    • Integer Linear Programming
    • Heuristics for Solving Integer Linear Programs
    • Solving General Integer Linear Programs
    • Finding Synchronization-Free Parallelism
    • Affine Space Partitions
    • Space-Partition Constraints
    • Solving Space-Partition Constraints
    • A Simple Code-Generation Algorithm
    • Eliminating Empty Iterations
    • Synchronization Between Parallel Loops
    • The Parallelization Algorithm and Hierarchical Time
    • Pipelining
    • Solving Time-Partition Constraints by Farkas' Lemma
    • Code Transformations
    • Parallelism With Minimum Synchronization
    • Locality Optimizations
    • Partition Interleaving
    • Putting it All Together
    • Uses of Affine Transforms
    • Interprocedural Analysis
    • Context Sensitivity
    • Cloning-Based Context-Sensitive Analysis
    • Importance of Interprocedural Analysis
    • SQL Injection
    • A Logical Representation of Data Flow
    • Execution of Datalog Programs
    • Problematic Datalog Rules
    • A Simple Pointer-Analysis Algorithm
    • Flow Insensitivity
    • Context-Insensitive Interprocedural Analysis
    • Context-Sensitive Pointer Analysis
    • Adding Context to Datalog Rules
    • Datalog Implementation by BDD's
    • Relational Operations as BDD Operations

Branch : Computer Science and Engineering
Subject : Compiler design
Unit : Syntax-directed Translation

Optimization of Basic Blocks


Introduction: Optimization is the process of transforming a piece of code to make more efficient (either in terms of time or space) without changing its output or side-effects. The only difference visible to the code’s user should be that it runs faster and/or consumes less memory. It is really a misnomer that the name implies you are finding an "optimal" solution— in truth, optimization aims to improve, not perfect, the result.

We can often obtain a substantial improvement in the running time of code merely by performing local optimization within each basic block by itself. More thorough global optimization, which looks at how information flows among the basic blocks of a program, is covered in later chapters, starting with Chapter 9. It is a complex subject, with many different techniques to consider.

The DAG Representation of Basic Blocks: Many important techniques for local optimization begin by transforming a basic block into a DAG (directed acyclic graph). In Section 6.1.1, we introduced the DAG as a representation for single expressions. The idea extends naturally to the collection of expressions that are created within one basic block. We construct a DAG for a basic blockas follows:

1.  There is a node in the DAG for each of the initial values of the variables appearing in the basic block.

2. There is a node N associated with each statement s within the block. The children of N are those nodes corresponding to statements that are the last definitions, prior to s, of the operands used by s.

3.  Node N is labeled by the operator applied at s, and also attached to N is the list of variables for which it is the last definition within the block.

4.  Certain nodes are designated output nodes. These are the nodes whose variables are live on exit from the block; that is, their values may be used later, in another block of the flow graph. Calculation of these "live variables" is a matter for global flow analysis, discussed in Section 9.2.5.

The DAG representation of a basic block lets us perform several code improving transformations on the code represented by the block.

a)  We can eliminate local common subexpressions, that is, instructions that compute a value that has already been computed.

b)  We can eliminate dead code, that is, instructions that compute a value that is never used.

c)  We can reorder statements that do not depend on one another; such reordering may reduce the time a temporary value needs to be preserved in a register.

d)  We can apply algebraic laws to reorder operands of three-addaddress instructions, and sometimes thereby simplify the computation.

Finding Local Common Subexpressions: Common subexpressions can be detected by noticing, as a new node M is aboutto be added, whether there is an existing node N with the same children, inthe same order, and with the same operator. If so, TV computes the same valueas M and may be used in its place. This technique was introduced as the"value-number" method of detecting common subexpressions in Section 6.1.1.

Example: A DAG for the block

a = b c

b = a - d

c = b c

d = a - d

is shown in Fig. 8.12. When we construct the node for the third statement c = b c, we know that the use of b in b c refers to the node of Fig. 8.12 labeled -, because that is the most recent definition of b. Thus, we do not confuse the values computed at statements one and three.

However, the node corresponding to the fourth statement d = a - d has the operator - and the nodes with attached variables a and do as children. Since the operator and the children are the same as those for the node corresponding to statement two, we do not create this node, but add d to the list of definitions for the node labeled.

It might appear that, since there are only three nonleaf nodes in the DAG of Fig. 8.12, the basic block in Example 8.10 can be replaced by a block with only three statements. In fact, if b is not live on exit from the block, then we do not need to compute that variable, and can use d to receive the value represented by the node labeled —. in Fig. 8.12. The block then becomes However, if both b and d are live on exit, then a fourth statement must be used to copy the value from one to the other.

Questions of this topic


Ask your question

<
>