FE-Logo
  • Home
  • Study Material
  • Non-Deterministic Finite Automation
    • Introduction to Compiler
    • The Structure of a Compiler
    • Intermediate Code Generation
    • Building a Compiler
    • Applications of Compiler
    • Optimizations for Computer Architectures
    • Design of New Computer Architectures
    • Program Translations
    • Software Productivity Tools
    • Programming Language Basics
    • Minimisation of DFAs
    • Explicit Access Control
    • Parameter Passing Mechanisms
    • Introduction to Lexical Analysis
    • Regular expressions
    • Short hands
    • Nondeterministic finite automata
    • Converting a regular expression to an NFA
    • Deterministic finite automata
    • Converting an NFA to a DFA
    • The subset construction
    • Dead states
    • Lexers and lexer generators
    • Splitting the input stream
    • Lexical errors
    • Properties of regular languages
    • Limits to expressive power
    • The Role of the Lexical Analyzer
    • Input Buffering
    • Specification of Tokens
    • Operations on Languages
    • Regular Definitions and Extensions
    • Recognition of Tokens
    • The Lexical-Analyzer Generator Lex
    • Finite Automata
    • Construction of an NFA from a Regular Expression
    • Efficiency of String-Processing Algorithms
    • The Structure of the Generated Analyzer
    • Optimization of DFA-Based Pattern Matchers

  • Basic Parsing Techniques
    • Introduction to Syntax analysis
    • Context-free grammars
    • Writing context free grammars
    • Derivation
    • Syntax trees and ambiguity
    • Operator precedence
    • Writing ambiguous expression grammars
    • Other sources of ambiguity
    • Syntax analysis and Predictive parsing
    • Nullable and FIRST
    • Predictive parsing revisited
    • FOLLOW
    • LL(1) parsing
    • Methods for rewriting grammars for LL(1) parsing
    • SLR parsing
    • Constructions of SLR parse tables
    • Conflicts in SLR parse-tables
    • Using precedence rules in LR parse tables
    • Using LR-parser generators
    • Properties of context-free languages
    • Introduction to Syntax-Directed Translator
    • Evaluating an SDD at the Nodes of a Parse Tree
    • Evaluation Orders for SDD\'s
    • Ordering the Evaluation of Attributes
    • A larger example of calculating FIRST and FOLLOW
    • Syntax Definition
    • Associativity of Operators
    • Parse Trees
    • Ambiguity
    • Syntax-Directed Translation
    • Synthesized Attributes
    • Tree Traversals
    • Parsing
    • Predictive Parsing
    • Use e-Productions
    • Translator for Simple Expressions
    • Semantic Rules with Controlled Side Effects
    • Applications of Syntax-Directed Translation
    • The Structure of a Type of syntax
    • Switch-Statements
    • Syntax-Directed Translation Schemes
    • Postfix Translation Schemes
    • SDT\'s With Actions Inside Productions
    • Eliminating Left Recursion from SDT\'s
    • SDT\'s for L-Attributed Definitions
    • Implementing L-Attributed SDD\'s
    • On-The-Fly Code Generation
    • L-Attributed SDD\'s and LL Parsing
    • Bottom-Up Parsing of L-Attributed SDD\'s

  • Syntax-directed Translation
    • Register Allocation and Assignment
    • Semantic Analysis
    • Introduction to Intermediate Code Generation
    • Variants of Syntax Trees
    • Variants of Syntax Trees
    • The Value-Number Method for Constructing DAG\'s
    • Three-Address Code
    • Quadruples
    • Triples
    • Static Single-Assignment Form
    • Types and Declarations
    • Type Equivalence
    • Sequences of Declarations
    • Translation of Expressions
    • Incremental Translation
    • Addressing Array Elements
    • Translation of Array References
    • Type Checking
    • Type Conversions
    • Overloading of Functions and Operators
    • Type Inference and Polymorphic Functions
    • Algorithm for Unification
    • Control Flow
    • Flow-of-Control Statements
    • Control-Flow Translation of Boolean Expressions
    • Boolean Values and Jumping Code
    • Back patching
    • Backpatching for Boolean Expressions
    • Flow-of-Control Statements
    • Break-, Continue-, and Goto-Statements
    • Introduction to Run-Time Environments
    • Stack Allocation of Space
    • Activation Records
    • Calling Sequences
    • Variable-Length Data on the Stack
    • Access to Nonlocal Data on the Stack
    • Displays
    • Heap Management
    • Locality in Programs
    • Reducing Fragmentation
    • Managing and Coalescing Free Space
    • Manual Deallocation Requests
    • Reachability
    • Introduction to Garbage Collection
    • Reference Counting Garbage Collectors
    • Introduction to Trace-Based Collection
    • Basic Abstraction
    • Optimizing Mark-and-Sweep
    • Mark-and-Compact Garbage Collectors
    • Copying collectors
    • Short-Pause Garbage Collection
    • Incremental Reachability Analysis
    • Partial-Collection Basics
    • The Train Algorithm
    • Parallel and Concurrent Garbage Collection
    • Partial Object Relocation
    • Introduction Code Generation
    • Issues in the Design of a Code Generator
    • Instruction Selection
    • Register Allocation
    • The Target Language
    • Addresses in the Target Code
    • Stack Allocation
    • Run-Time Addresses for Names
    • Basic Blocks and Flow Graphs
    • Basic Blocks
    • Next-Use Information
    • Representation of Flow Graphs
    • Optimization of Basic Blocks
    • Dead Code Elimination
    • Representation of Array References
    • Pointer Assignments and Procedure Calls
    • A Simple Code Generator
    • The Code-Generation Algorithm
    • Design of the Function getReg
    • Peephole Optimization
    • Algebraic Simplification and Reduction in Strength
    • Register Assignment for Outer Loops
    • Instruction Selection by Tree Rewriting
    • Code Generation by Tiling an Input Tree
    • Pattern Matching by Parsing
    • General Tree Matching
    • Optimal Code Generation for Expressions
    • Evaluating Expressions with an Insufficient Supply of Registers
    • Dynamic Programming Code-Generation

  • Data Flow Analysis
    • The Lazy-Code-Motion Algorithm
    • Introduction to Machine-Independent Optimizations
    • The Dynamic Programming Algorithm
    • The Principal Sources of Optimization
    • Semantics-Preserving Transformations
    • Copy Propagation
    • Induction Variables and Reduction in Strength
    • Introduction to Data-Flow Analysis
    • The Data-Flow Analysis Schema
    • Reaching Definitions
    • Live-Variable Analysis
    • Available Expressions
    • Foundations of Data-Flow Analysis
    • Transfer Functions
    • The Iterative Algorithm for General Frameworks
    • Meaning of a Data-Flow Solution
    • Constant Propagation
    • Transfer Functions for the Constant-Propagation Framework
    • Partial-Redundancy Elimination
    • The Lazy-Code-Motion Problem
    • Loops in Flow Graphs
    • Depth-First Ordering
    • Back Edges and Reducibility
    • Natural Loops
    • Speed of Convergence of Iterative Data-Flow Algorithms
    • Region-Based Analysis
    • Necessary Assumptions About Transfer Functions
    • An Algorithm for Region-Based Analysis
    • Handling Non-reducible Flow Graphs
    • Symbolic Analysis
    • Data-Flow Problem Formulation
    • Region-Based Symbolic Analysis

  • Code Generation
    • Introduction to Software Pipelining of Loops
    • Matrix Multiply: An In-Depth Example
    • Software Pipelining of Loops
    • Introduction Instruction-Level Parallelism
    • Multiple Instruction Issue
    • A Basic Machine Model
    • Code-Scheduling Constraints
    • Finding Dependences Among Memory Accesses
    • Phase Ordering Between Register Allocation and Code Scheduling
    • Speculative Execution Support
    • Basic-Block Scheduling
    • List Scheduling of Basic Blocks
    • Global Code Scheduling
    • Upward Code Motion
    • Updating Data Dependences
    • Advanced Code Motion Techniques
    • Software Pipelining
    • Register Allocation and Code Generation
    • A Software-Pipelining Algorithm
    • Scheduling Cyclic Dependence Graphs
    • Improvements to the Pipelining Algorithms
    • Conditional Statements and Hardware Support for Software Pipelining
    • Basic Concepts of Parallelism and Locality
    • Parallelism in Applications
    • Loop-Level Parallelism
    • Introduction to Affine Transform Theory
    • Optimizations
    • Iteration Spaces
    • Affine Array Indexes
    • Controlling the Order of Execution
    • Changing Axes
    • Intermediate Code for Procedures
    • Data Reuse
    • Self Reuse
    • Self-Spatial Reuse
    • Array Data-Dependence Analysis
    • Integer Linear Programming
    • Heuristics for Solving Integer Linear Programs
    • Solving General Integer Linear Programs
    • Finding Synchronization-Free Parallelism
    • Affine Space Partitions
    • Space-Partition Constraints
    • Solving Space-Partition Constraints
    • A Simple Code-Generation Algorithm
    • Eliminating Empty Iterations
    • Synchronization Between Parallel Loops
    • The Parallelization Algorithm and Hierarchical Time
    • Pipelining
    • Solving Time-Partition Constraints by Farkas' Lemma
    • Code Transformations
    • Parallelism With Minimum Synchronization
    • Locality Optimizations
    • Partition Interleaving
    • Putting it All Together
    • Uses of Affine Transforms
    • Interprocedural Analysis
    • Context Sensitivity
    • Cloning-Based Context-Sensitive Analysis
    • Importance of Interprocedural Analysis
    • SQL Injection
    • A Logical Representation of Data Flow
    • Execution of Datalog Programs
    • Problematic Datalog Rules
    • A Simple Pointer-Analysis Algorithm
    • Flow Insensitivity
    • Context-Insensitive Interprocedural Analysis
    • Context-Sensitive Pointer Analysis
    • Adding Context to Datalog Rules
    • Datalog Implementation by BDD's
    • Relational Operations as BDD Operations

Branch : Computer Science and Engineering
Subject : Compiler design
Unit : Syntax-directed Translation

Reachability


Introduction: We refer to all the data that can be accessed directly by a program, without having to dereference any pointer, as the root set For example, in Java the root set of a program consists of all the static field members and all the variables on its stack. A program obviously can reach any member of its root set at any time. Recursively, any object with a reference that is stored in the field members or array elements of any reachable object is itself reachable.

Reachability becomes a bit more complex when the program has been optimized by the compiler. First, a compiler may keep reference variables in registers. These references must also be considered part of the root set. Second, even though in a type-safe language programmers do not get to manipulate memory addresses directly, a compiler often does so for the sake of speeding up the code. Thus, registers in compiled code may point to the middle of an object or an array, or they may contain a value to which an offset will be applied to compute a legal address. Here are some things an optimizing compiler can do to enable the garbage collector to find the correct root set:

  • The compiler can restrict the invocation of garbage collection to only certain code points in the program, when no "hidden" references exist.
  • The compiler can write out information that the garbage collector can use to recover all the references, such as specifying which registers contain references, or how to compute the base address of an object that is given an internal address.
  • The compiler can assure that there is a reference to the base address of all reachable objects whenever the garbage collector may be invoked. The set of reachable objects changes as a program executes. It grows as new objects get created and shrinks as objects become unreachable. It is important to remember that once an object becomes unreachable, it cannot become reachable again. There are four basic operations that a mutator performs to change the set of reachable objects:
  • Object Allocations. These are performed by the memory manager, which returns a reference to each newly allocated chunk of memory. This operation adds members to the set of reachable objects.
  • Parameter Passing and Return Values. References to objects are passed from the actual input parameter to the corresponding formal parameter, and from the returned result back to the callee. Objects pointed to by these references remain reachable.
  • Reference Assignments. Assignments of the form u = v, where u and v are references, have two effects. First, u is now a reference to the object referred to by v. As long as u is reachable, the object it refers to is surely reachable. Second, the original reference in u is lost. If this reference is the last to some reachable object, then that object becomes unreachable. Any time an object becomes unreachable, all objects that are reachable only through references contained in that object also become unreachable.
  • Procedure Returns. As a procedure exits, the frame holding its local variables is popped off the stack. If the frame holds the only reachable reference to any object, that object becomes unreachable. Again, if the now unreachable objects hold the only references to other objects, they too become unreachable, and so on.

In summary, new objects are introduced through object allocations. Parameter passing and assignments can propagate reachability; assignments and ends of procedures can terminate reachability. As an object becomes unreachable, it can cause more objects to become unreachable.

There are two basic ways to find unreachable objects. Either we catch the transitions as reachable objects turn unreachable, or we periodically locate all the reachable objects and then infer that all the other objects are unreachable. We maintain a count of the references to an object, as the mutator performs actions that may change the reachability set. When the count goes to zero, the object becomes unreachable.

The second approach computes reachability by tracing all the references transitively. A trace-based garbage collector starts by labeling ("marking") all objects in the root set as "reachable," examines iteratively all the references in reachable objects to find more reachable objects, and labels them as such. This approach must trace all the references before it can determine any object to be unreachable. But once the reachable set is computed, it can find many unreachable objects all at once and locate a good deal of free storage at the same time. Because all the references must be analyzed at the same time, we have an option to relocate the reachable objects and thereby reduce fragmentation.

Questions of this topic


Ask your question

<
>