FE-Logo
  • Home
  • Study Material
  • Non-Deterministic Finite Automation
    • Introduction to Compiler
    • The Structure of a Compiler
    • Intermediate Code Generation
    • Building a Compiler
    • Applications of Compiler
    • Optimizations for Computer Architectures
    • Design of New Computer Architectures
    • Program Translations
    • Software Productivity Tools
    • Programming Language Basics
    • Minimisation of DFAs
    • Explicit Access Control
    • Parameter Passing Mechanisms
    • Introduction to Lexical Analysis
    • Regular expressions
    • Short hands
    • Nondeterministic finite automata
    • Converting a regular expression to an NFA
    • Deterministic finite automata
    • Converting an NFA to a DFA
    • The subset construction
    • Dead states
    • Lexers and lexer generators
    • Splitting the input stream
    • Lexical errors
    • Properties of regular languages
    • Limits to expressive power
    • The Role of the Lexical Analyzer
    • Input Buffering
    • Specification of Tokens
    • Operations on Languages
    • Regular Definitions and Extensions
    • Recognition of Tokens
    • The Lexical-Analyzer Generator Lex
    • Finite Automata
    • Construction of an NFA from a Regular Expression
    • Efficiency of String-Processing Algorithms
    • The Structure of the Generated Analyzer
    • Optimization of DFA-Based Pattern Matchers

  • Basic Parsing Techniques
    • Introduction to Syntax analysis
    • Context-free grammars
    • Writing context free grammars
    • Derivation
    • Syntax trees and ambiguity
    • Operator precedence
    • Writing ambiguous expression grammars
    • Other sources of ambiguity
    • Syntax analysis and Predictive parsing
    • Nullable and FIRST
    • Predictive parsing revisited
    • FOLLOW
    • LL(1) parsing
    • Methods for rewriting grammars for LL(1) parsing
    • SLR parsing
    • Constructions of SLR parse tables
    • Conflicts in SLR parse-tables
    • Using precedence rules in LR parse tables
    • Using LR-parser generators
    • Properties of context-free languages
    • Introduction to Syntax-Directed Translator
    • Evaluating an SDD at the Nodes of a Parse Tree
    • Evaluation Orders for SDD\'s
    • Ordering the Evaluation of Attributes
    • A larger example of calculating FIRST and FOLLOW
    • Syntax Definition
    • Associativity of Operators
    • Parse Trees
    • Ambiguity
    • Syntax-Directed Translation
    • Synthesized Attributes
    • Tree Traversals
    • Parsing
    • Predictive Parsing
    • Use e-Productions
    • Translator for Simple Expressions
    • Semantic Rules with Controlled Side Effects
    • Applications of Syntax-Directed Translation
    • The Structure of a Type of syntax
    • Switch-Statements
    • Syntax-Directed Translation Schemes
    • Postfix Translation Schemes
    • SDT\'s With Actions Inside Productions
    • Eliminating Left Recursion from SDT\'s
    • SDT\'s for L-Attributed Definitions
    • Implementing L-Attributed SDD\'s
    • On-The-Fly Code Generation
    • L-Attributed SDD\'s and LL Parsing
    • Bottom-Up Parsing of L-Attributed SDD\'s

  • Syntax-directed Translation
    • Register Allocation and Assignment
    • Semantic Analysis
    • Introduction to Intermediate Code Generation
    • Variants of Syntax Trees
    • Variants of Syntax Trees
    • The Value-Number Method for Constructing DAG\'s
    • Three-Address Code
    • Quadruples
    • Triples
    • Static Single-Assignment Form
    • Types and Declarations
    • Type Equivalence
    • Sequences of Declarations
    • Translation of Expressions
    • Incremental Translation
    • Addressing Array Elements
    • Translation of Array References
    • Type Checking
    • Type Conversions
    • Overloading of Functions and Operators
    • Type Inference and Polymorphic Functions
    • Algorithm for Unification
    • Control Flow
    • Flow-of-Control Statements
    • Control-Flow Translation of Boolean Expressions
    • Boolean Values and Jumping Code
    • Back patching
    • Backpatching for Boolean Expressions
    • Flow-of-Control Statements
    • Break-, Continue-, and Goto-Statements
    • Introduction to Run-Time Environments
    • Stack Allocation of Space
    • Activation Records
    • Calling Sequences
    • Variable-Length Data on the Stack
    • Access to Nonlocal Data on the Stack
    • Displays
    • Heap Management
    • Locality in Programs
    • Reducing Fragmentation
    • Managing and Coalescing Free Space
    • Manual Deallocation Requests
    • Reachability
    • Introduction to Garbage Collection
    • Reference Counting Garbage Collectors
    • Introduction to Trace-Based Collection
    • Basic Abstraction
    • Optimizing Mark-and-Sweep
    • Mark-and-Compact Garbage Collectors
    • Copying collectors
    • Short-Pause Garbage Collection
    • Incremental Reachability Analysis
    • Partial-Collection Basics
    • The Train Algorithm
    • Parallel and Concurrent Garbage Collection
    • Partial Object Relocation
    • Introduction Code Generation
    • Issues in the Design of a Code Generator
    • Instruction Selection
    • Register Allocation
    • The Target Language
    • Addresses in the Target Code
    • Stack Allocation
    • Run-Time Addresses for Names
    • Basic Blocks and Flow Graphs
    • Basic Blocks
    • Next-Use Information
    • Representation of Flow Graphs
    • Optimization of Basic Blocks
    • Dead Code Elimination
    • Representation of Array References
    • Pointer Assignments and Procedure Calls
    • A Simple Code Generator
    • The Code-Generation Algorithm
    • Design of the Function getReg
    • Peephole Optimization
    • Algebraic Simplification and Reduction in Strength
    • Register Assignment for Outer Loops
    • Instruction Selection by Tree Rewriting
    • Code Generation by Tiling an Input Tree
    • Pattern Matching by Parsing
    • General Tree Matching
    • Optimal Code Generation for Expressions
    • Evaluating Expressions with an Insufficient Supply of Registers
    • Dynamic Programming Code-Generation

  • Data Flow Analysis
    • The Lazy-Code-Motion Algorithm
    • Introduction to Machine-Independent Optimizations
    • The Dynamic Programming Algorithm
    • The Principal Sources of Optimization
    • Semantics-Preserving Transformations
    • Copy Propagation
    • Induction Variables and Reduction in Strength
    • Introduction to Data-Flow Analysis
    • The Data-Flow Analysis Schema
    • Reaching Definitions
    • Live-Variable Analysis
    • Available Expressions
    • Foundations of Data-Flow Analysis
    • Transfer Functions
    • The Iterative Algorithm for General Frameworks
    • Meaning of a Data-Flow Solution
    • Constant Propagation
    • Transfer Functions for the Constant-Propagation Framework
    • Partial-Redundancy Elimination
    • The Lazy-Code-Motion Problem
    • Loops in Flow Graphs
    • Depth-First Ordering
    • Back Edges and Reducibility
    • Natural Loops
    • Speed of Convergence of Iterative Data-Flow Algorithms
    • Region-Based Analysis
    • Necessary Assumptions About Transfer Functions
    • An Algorithm for Region-Based Analysis
    • Handling Non-reducible Flow Graphs
    • Symbolic Analysis
    • Data-Flow Problem Formulation
    • Region-Based Symbolic Analysis

  • Code Generation
    • Introduction to Software Pipelining of Loops
    • Matrix Multiply: An In-Depth Example
    • Software Pipelining of Loops
    • Introduction Instruction-Level Parallelism
    • Multiple Instruction Issue
    • A Basic Machine Model
    • Code-Scheduling Constraints
    • Finding Dependences Among Memory Accesses
    • Phase Ordering Between Register Allocation and Code Scheduling
    • Speculative Execution Support
    • Basic-Block Scheduling
    • List Scheduling of Basic Blocks
    • Global Code Scheduling
    • Upward Code Motion
    • Updating Data Dependences
    • Advanced Code Motion Techniques
    • Software Pipelining
    • Register Allocation and Code Generation
    • A Software-Pipelining Algorithm
    • Scheduling Cyclic Dependence Graphs
    • Improvements to the Pipelining Algorithms
    • Conditional Statements and Hardware Support for Software Pipelining
    • Basic Concepts of Parallelism and Locality
    • Parallelism in Applications
    • Loop-Level Parallelism
    • Introduction to Affine Transform Theory
    • Optimizations
    • Iteration Spaces
    • Affine Array Indexes
    • Controlling the Order of Execution
    • Changing Axes
    • Intermediate Code for Procedures
    • Data Reuse
    • Self Reuse
    • Self-Spatial Reuse
    • Array Data-Dependence Analysis
    • Integer Linear Programming
    • Heuristics for Solving Integer Linear Programs
    • Solving General Integer Linear Programs
    • Finding Synchronization-Free Parallelism
    • Affine Space Partitions
    • Space-Partition Constraints
    • Solving Space-Partition Constraints
    • A Simple Code-Generation Algorithm
    • Eliminating Empty Iterations
    • Synchronization Between Parallel Loops
    • The Parallelization Algorithm and Hierarchical Time
    • Pipelining
    • Solving Time-Partition Constraints by Farkas' Lemma
    • Code Transformations
    • Parallelism With Minimum Synchronization
    • Locality Optimizations
    • Partition Interleaving
    • Putting it All Together
    • Uses of Affine Transforms
    • Interprocedural Analysis
    • Context Sensitivity
    • Cloning-Based Context-Sensitive Analysis
    • Importance of Interprocedural Analysis
    • SQL Injection
    • A Logical Representation of Data Flow
    • Execution of Datalog Programs
    • Problematic Datalog Rules
    • A Simple Pointer-Analysis Algorithm
    • Flow Insensitivity
    • Context-Insensitive Interprocedural Analysis
    • Context-Sensitive Pointer Analysis
    • Adding Context to Datalog Rules
    • Datalog Implementation by BDD's
    • Relational Operations as BDD Operations

Branch : Computer Science and Engineering
Subject : Compiler design
Unit : Code Generation

Affine Array Indexes


Introduction: The focus of this chapter is on the class of affine array accesses, where each array index is expressed as affine expressions of loop indexes and symbolic constants. Affine functions provide a succinct mapping from the iteration space to the data space, making it easy to determine which iterations map to the same data or same cache line.

Just as the affine upper and lower bounds of a loop can be represented as a matrix-vector calculation, we can do the same for affine access functions. Once placed in the matrix-vector form, we can apply standard linear algebra to find pertinent information such as the dimensions of the data accessed, and which iterations refer to the same data.

Affine Accesses: We say that an array access in a loop is affine if

1.       The bounds of the loop are expressed as affine expressions of the surrounding loop variables and symbolic constants, and

2.      

The index for each dimension of the array is also an affine expression of surrounding loop variables and symbolic constants.

Example 11.17: In Fig. 11.18 are some common array accesses, expressed in matrix notation. The two loop indexes are i and j, and these form the vector i. Also, X, Y, and Z are arrays with 1, 2, and 3 dimensions, respectively. The first access, A[i - 1], is represented by a 1 x 2 matrix F and a vector f of length 1. Notice that when we perform the matrix-vector multiplication and add in the vector f, we are left with a single function, which is exactly the formula for the access to the one-dimensional array X. Also notice the third access, Y[j,j 1], which, after matrix-vector multiplication and addition, yields a pair of functions, (J,j 1). These are the indexes of the two dimensions of the array access.

Finally, let us observe the fourth access K[l,2]. This access is a constant, and unsurprisingly the matrix F is all 0's. Thus, the vector of loop indexes, i, does not appear in the access function.

Affine and Non-affine Accesses in Practice: There are certain common data access patterns found in numerical programs that fail to be affine. Programs involving sparse matrices are one important example. One popular representation for sparse matrices is to store only the nonzero elements in a vector, and auxiliary index arrays are used to mark where a row starts and which columns contain nonzeros. Indirect array accesses are used in accessing such data. An access of this type, such as is a nonaffine access to the array X. If the sparsity is regular, as in banded matrices having nonzeros only around the diagonal, then dense arrays can be used to represent the subregions with nonzero elements. In that case, accesses may be affine.

Another common example of nonaffine accesses is linearized arrays. Programmers sometimes use a linear array to store a logically multidimensional object. One reason why this is the case is that the dimensions of the array may not be known at compile time. An access that would normally look like Z[i,j] would be expressed as Z[i * n j], which is a quadratic function. We can convert the linear access into a multidimensional access if every access can be decomposed into separate dimensions with the guarantee that none of the components exceeds its bound. Finally, we note that induction-variable analyses can be used to convert some nonaffine accesses into affine ones, as shown in Example 11.18.

Questions of this topic


Ask your question

<
>