Subject : Power Electronics
Unit : AC to DC Converters
Operation of single phase fully controlled converter with source inductance circuit diagram & waveforms
Operation of single phase fully controlled converter with source Inductance:

We assume that the conduction operates in the continuous conduction mode. It has also been assumed that the load current ripple is negligible and the load can be replaced by a dc current source the magnitude of which equals the average load current.

It is assumed that the thyristors T_{3 }and T_{4 }were conducting at t = 0. T_{1 }and T_{2 }are fired at ωt = α. If there were no source inductance T_{3 }and T_{4 }would have commutated as soon as T_{1 }and T_{2 }are turned ON.

The input current polarity would have changed instantaneously. However, if a source inductance is present the commutation and change of input current polarity cannot be instantaneous. Therefore, when T_{1 }and T_{2 }are turned ON T_{3 }T_{4 }does not commutate immediately. But for some interval all four thyristors continue to conduct. This interval is called “overlap” interval.
 During this period the load current freewheels through the thyristors and the output voltage is clamped to zero. On the other hand, the input current starts changing polarity as the current through T_{1 }and T_{2 }increases and T_{3 }T_{4 }current decreases. At the end of the overlap interval the current through T_{3 }and T_{4 }becomes zero and they commutate, T_{1 }and T_{2 }starts conducting the full load current. The same process repeats during commutation from T_{1 }T_{2 }to T_{3}T_{4 }at ωt = π α.
Fig: Equivalent circuit during overlap period & Equivalent circuit representation of the single phase fully controlled rectifier with source inductance
 It is obvious that commutation overlap not only reduces average output dc voltage but also reduces the extinction angle γ which may cause commutation failure in the inverting mode of operation if α is very close to 180º. In the following analysis an expression of the overlap angle “μ” will be determined.
 The open circuit voltage of this practical source equals the average dc output voltage of an ideal converter (without source inductance) operating at a firing angle of α. The voltage drop across the internal resistance “R_{C}” represents the voltage lost due to overlap. This is called the “Commutation resistance”.
 Although this resistance accounts for the voltage drop correctly there is no power loss associated with this resistance since the physical process of overlap does not involve any power loss. Therefore this resistance should be used carefully where power calculation is involved.