As shown in figure below, this depicts a number of weights that are suspended by elastic strings. The weights represent generators and the electric transmission lines being represented by the strings. Note that in a transmission system, each transmission line is loaded below its static stability limit. Similarly, when the mechanical system is in static steady state, each string is loaded below its break point. At this point one of the strings is suddenly cut. This will result in transient oscillations in the coupled strings and all the weights will shake. In the best possible case, this may result in the coupled system settling down to a new steady state. On the other hand, in the worst possible scenario this may result in the breaking of one more additional string, resulting in a chain reaction in which more strings may break forcing a system collapse. In a similar way, in an interconnected electric power network, the tripping of a transmission line may cause a catastrophic failure in which a large number of generators are lost forcing a blackout in a large area.