The fault current is dependent on the value of earthing impedance and is also proportional to the distance of the fault point from neutral point as the voltage at the point depends upon, the number of winding turns come under across neutral and fault point. If the distance between fault point and neutral point is more, the number of turns come under this distance is also more, hence voltage across the neutral point and fault point is high which causes higher fault current. So, in few words it can be said that, the value of fault current depends on the value of earthing impedance as well as the distance between the faulty point and neutral point. The fault current also depends up on leakage reactance of the portion of the winding across the fault point and neutral. But compared to the earthing impedance, it is very low and it is obviously ignored as it comes in series with comparatively much higher earthing impedance.