The topics covered in the attached e-books are:

UNIT IAnalogy between vectors and signals, Orthogonal signal space, Signal approximation using orthogonal functions, Mean square error, Closed or complete set of orthogonal functions, Orthogonality in complex functions, Exponential and sinusoidal signals, Concepts of Impulse function, Unit step function, Signum function.

SIGNAL ANALYSIS :

UNIT IIRepresentation of Fourier series, Continuous time periodic signals, properties of Fourier series, Dirichlet’s conditions, Trigonometric Fourier series and Exponential Fourier series, Complex Fourier spectrum

FOURIER SERIES REPRESENTATION OF PERIODIC SIGNALS :

UNIT IIIDeriving Fourier transform from Fourier series, Fourier transform of arbitrary signal, Fourier transform of standard signals, Fourier transform of periodic signals, properties of Fourier transforms, Fourier transforms involving impulse function and Signum function. Introduction to Hilbert Transform.

FOURIER TRANSFORMS :

UNIT IVLinear system, impulse response, Response of a linear system, Linear time invariant (LTI) system, Linear time variant (LTV) system, Transfer function of a LTI system. Filter characteristics of linear systems. Distortion less transmission through a system, Signal bandwidth, system bandwidth, Ideal LPF, HPF and BPF characteristics, Causality and Poly-Wiener criterion for physical realization, relationship between bandwidth and rise time.

SIGNAL TRANSMISSION THROUGH LINEAR SYSTEMS :

UNIT VConcept of convolution in time domain and frequency domain, Graphical representation of convolution, Convolution property of Fourier transforms. Cross correlation and auto correlation of functions, properties of correlation function, Energy density spectrum, Parseval’s theorem, Power density spectrum, Relation between auto correlation function and energy/power spectral density function.Relation between convolution and correlation, Detection of periodic signals in the presence of noise by correlation, Extraction of signal from noise by filtering.

CONVOLUTION AND CORRELATION OF SIGNALS :

UNIT VISampling theorem – Graphical and analytical proof for Band Limited Signals, impulse sampling, Natural and Flat top Sampling, Reconstruction of signal from its samples, effect of under sampling – Aliasing, Introduction to Band Pass sampling.

SAMPLING :

UNIT VIIReview of Laplace transforms, Partial fraction expansion, Inverse Laplace transform, Concept of region of convergence (ROC) for Laplace transforms, constraints on ROC for various classes of signals, Properties of L.T’s relation between L.T’s, and F.T. of a signal. Laplace transform of certain signals using waveform synthesis.

LAPLACE TRANSFORMS :

UNIT VIIIFundamental difference between continuous and discrete time signals, discrete time signal representation using complex exponential and sinusoidal components, Periodicity of discrete time usingcomplex exponential signal, Concept of Z- Transform of a discrete sequence. Distinction between Laplace, Fourier and Z transforms. Region of convergence in Z-Transform, constraints on ROC for various classes of signals, Inverse Z-transform, properties of Z-transforms.

Z–TRANSFORMS :Similar Threads:

- VISUAL C++ Ebooks, presentations and lecture notes covering full semester syllabus
- Digital Signal Processing Ebooks, Notes and presentations covering full semester syllabus
- UNIX Ebooks, presentations and lecture notes covering full semester syllabus
- UML Ebooks, presentations and lecture notes covering full semester syllabus
- SQL Ebooks, presentations and lecture notes covering full semester syllabus