Close
Login to Your Account
Faadooengineers




Results 1 to 1 of 1

Thread: Modern Physical Metallurgy Books Free Download

  1. #1
    Fuchcha FaaDoO Engineer
    Join Date
    Feb 2015
    Posts
    1

    Gender: : Male

    Branch: : Mechanical Engineering

    City : Patna*

    Send Private Message
    Send Friend Request

    Download Modern Physical Metallurgy Books Free Download

    Modern Physical Metallurgy Books Pdf Free Download
    The structure and bonding of atoms 1
    1.1 The realm of materials science 1
    1.2 The free atom 2
    1.2.1 The four electron quantum
    numbers 2
    1.2.2 Nomenclature for electronic
    1.3 The Periodic Table 4
    1.4 Interatomic bonding in materials 7
    1.5 Bonding and energy levels 9
    2 Atomic arrangements in materials 11
    2.1 The concept of ordering 11
    2.2 Crystal lattices and structures 12
    2.3 Crystal directions and planes 13
    2.4 Stereographic projection 16
    2.5 Selected crystal structures 18
    2.5.1 Pure metals 18
    2.5.2 Diamond and graphite 21
    2.5.3 Coordination in ionic crystals 22
    2.5.4 AB-type compounds 24
    2.5.5 Silica 24
    2.5.6 Alumina 26
    2.5.7 Complex oxides 26
    2.5.8 Silicates 27
    2.6 Inorganic glasses 30
    2.6.1 Network structures in glasses 30
    2.6.2 Classification of constituent
    oxides 31
    2.7 Polymeric structures 32
    2.7.1 Thermoplastics 32
    2.7.2 Elastomers 35
    2.7.3 Thermosets 36
    2.7.4 Crystallinity in polymers 38
    3 Structural phases; their formation and
    transitions 42
    3.1 Crystallization from the melt 42
    3.1.1 Freezing of a pure metal 42
    3.1.2 Plane-front and dendritic
    solidification at a cooled
    surface 43
    3.1.3 Forms of cast structure 44
    3.1.4 Gas porosity and segregation 45
    3.1.5 Directional solidification 46
    3.1.6 Production of metallic single crystals
    for research 47
    3.2 Principles and applications of phase
    diagrams 48
    3.2.1 The concept of a phase 48
    3.2.2 The Phase Rule 48
    3.2.3 Stability of phases 49
    3.2.4 Two-phase equilibria 52
    3.2.5 Three-phase equilibria and
    reactions 56
    3.2.6 Intermediate phases 58
    3.2.7 Limitations of phase diagrams 59
    3.2.8 Some key phase diagrams 60
    3.2.9 Ternary phase diagrams 64
    3.3 Principles of alloy theory 73
    3.3.1 Primary substitutional solid
    solutions 73
    3.3.2 Interstitial solid solutions 76
    3.3.3 Types of intermediate phases 76
    3.3.4 Order-disorder phenomena 79
    3.4 The mechanism of phase changes 80
    3.4.1 Kinetic considerations 80
    3.4.2 Homogeneous nucleation 81
    3.4.3 Heterogeneous nucleation 82
    3.4.4 Nucleation in solids 82
    4 Defects in solids 84
    4.1 Types of imperfection 84
    vi Contents
    4.2 Point defects 84
    4.2.1 Point defects in metals 84
    4.2.2 Point defects in non-metallic
    crystals 86
    4.2.3 Irradiation of solids 87
    4.2.4 Point defect concentration and
    annealing 89
    4.3 Line defects 90
    4.3.1 Concept of a dislocation 90
    4.3.2 Edge and screw dislocations 91
    4.3.3 The Burgers vector 91
    4.3.4 Mechanisms of slip and climb 92
    4.3.5 Strain energy associated with
    dislocations 95
    4.3.6 Dislocations in ionic structures 97
    4.4 Planar defects 97
    4.4.1 Grain boundaries 97
    4.4.2 Twin boundaries 98
    4.4.3 Extended dislocations and stacking
    faults in close-packed crystals 99
    4.5 Volume defects 104
    4.5.1 Void formation and annealing 104
    4.5.2 Irradiation and voiding 104
    4.5.3 Voiding and fracture 104
    4.6 Defect behaviour in some real
    materials 105
    4.6.1 Dislocation vector diagrams and the
    Thompson tetrahedron 105
    4.6.2 Dislocations and stacking faults in
    fcc structures 106
    4.6.3 Dislocations and stacking faults in
    cph structures 108
    4.6.4 Dislocations and stacking faults in
    bcc structures 112
    4.6.5 Dislocations and stacking faults in
    ordered structures 113
    4.6.6 Dislocations and stacking faults in
    ceramics 115
    4.6.7 Defects in crystalline
    polymers 116
    4.6.8 Defects in glasses 117
    4.7 Stability of defects 117
    4.7.1 Dislocation loops 117
    4.7.2 Voids 119
    4.7.3 Nuclear irradiation effects 119
    5 The characterization of materials 125
    5.1 Tools of characterization 125
    5.2 Light microscopy 126
    5.2.1 Basic principles 126
    5.2.2 Selected microscopical
    techniques 127
    5.3 X-ray diffraction analysis 133
    5.3.1 Production and absorption of
    X-rays 133
    5.3.2 Diffraction of X-rays by
    crystals 134
    5.3.3 X-ray diffraction methods 135
    5.3.4 Typical interpretative procedures for
    diffraction patterns 138
    5.4 Analytical electron microscopy 142
    5.4.1 Interaction of an electron beam with
    a solid 142
    5.4.2 The transmission electron
    microscope (TEM) 143
    5.4.3 The scanning electron
    microscope 144
    5.4.4 Theoretical aspects of TEM 146
    5.4.5 Chemical microanalysis 150
    5.4.6 Electron energy loss spectroscopy
    (EELS) 152
    5.4.7 Auger electron spectroscopy
    (AES) 154
    5.5 Observation of defects 154
    5.5.1 Etch pitting 154
    5.5.2 Dislocation decoration 155
    5.5.3 Dislocation strain contrast in
    TEM 155
    5.5.4 Contrast from crystals 157
    5.5.5 Imaging of dislocations 157
    5.5.6 Imaging of stacking faults 158
    5.5.7 Application of dynamical
    theory 158
    5.5.8 Weak-beam microscopy 160
    5.6 Specialized bombardment techniques 161
    5.6.1 Neutron diffraction 161
    5.6.2 Synchrotron radiation studies 162
    5.6.3 Secondary ion mass spectrometry
    (SIMS) 163
    5.7 Thermal analysis 164
    5.7.1 General capabilities of thermal
    analysis 164
    5.7.2 Thermogravimetric analysis 164
    5.7.3 Differential thermal analysis 165
    5.7.4 Differential scanning
    calorimetry 165
    6 The physical properties of materials 168
    6.1 Introduction 168
    6.2 Density 168
    6.3 Thermal properties 168
    6.3.1 Thermal expansion 168
    6.3.2 Specific heat capacity 170
    6.3.3 The specific heat curve and
    transformations 171
    6.3.4 Free energy of transformation 171
    6.4 Diffusion 172
    6.4.1 Diffusion laws 172
    6.4.2 Mechanisms of diffusion 174
    6.4.3 Factors affecting diffusion 175
    6.5 Anelasticity and internal friction 176
    6.6 Ordering in alloys 177
    6.6.1 Long-range and short-range
    order 177
    Contents vii
    6.6.2 Detection of ordering 178
    6.6.3 Influence of ordering upon
    properties 179
    6.7 Electrical properties 181
    6.7.1 Electrical conductivity 181
    6.7.2 Semiconductors 183
    6.7.3 Superconductivity 185
    6.7.4 Oxide superconductors 187
    6.8 Magnetic properties 188
    6.8.1 Magnetic susceptibility 188
    6.8.2 Diamagnetism and
    paramagnetism 189
    6.8.3 Ferromagnetism 189
    6.8.4 Magnetic alloys 191
    6.8.5 Anti-ferromagnetism and
    ferrimagnetism 192
    6.9 Dielectric materials 193
    6.9.1 Polarization 193
    6.9.2 Capacitors and insulators 193
    6.9.3 Piezoelectric materials 194
    6.9.4 Pyroelectric and ferroelectric
    materials 194
    6.10 Optical properties 195
    6.10.1 Reflection, absorption and
    transmission effects 195
    6.10.2 Optical fibres 195
    6.10.3 Lasers 195
    6.10.4 Ceramic ‘windows’ 196
    6.10.5 Electro-optic ceramics 196
    7 Mechanical behaviour of materials 197
    7.1 Mechanical testing procedures 197
    7.1.1 Introduction 197
    7.1.2 The tensile test 197
    7.1.3 Indentation hardness testing 199
    7.1.4 Impact testing 199
    7.1.5 Creep testing 199
    7.1.6 Fatigue testing 200
    7.1.7 Testing of ceramics 200
    7.2 Elastic deformation 201
    7.2.1 Elastic deformation of metals 201
    7.2.2 Elastic deformation of
    ceramics 203
    7.3 Plastic deformation 203
    7.3.1 Slip and twinning 203
    7.3.2 Resolved shear stress 203
    7.3.3 Relation of slip to crystal
    structure 204
    7.3.4 Law of critical resolved shear
    stress 205
    7.3.5 Multiple slip 205
    7.3.6 Relation between work-hardening
    and slip 206
    7.4 Dislocation behaviour during plastic
    deformation 207
    7.4.1 Dislocation mobility 207
    7.4.2 Variation of yield stress with
    temperature and strain rate 208
    7.4.3 Dislocation source operation 209
    7.4.4 Discontinuous yielding 211
    7.4.5 Yield points and crystal
    structure 212
    7.4.6 Discontinuous yielding in ordered
    alloys 214
    7.4.7 Solute–dislocation interaction 214
    7.4.8 Dislocation locking and
    temperature 216
    7.4.9 Inhomogeneity interaction 217
    7.4.10 Kinetics of strain-ageing 217
    7.4.11 Influence of grain boundaries on
    plasticity 218
    7.4.12 Superplasticity 220
    7.5 Mechanical twinning 221
    7.5.1 Crystallography of twinning 221
    7.5.2 Nucleation and growth of
    twins 222
    7.5.3 Effect of impurities on
    twinning 223
    7.5.4 Effect of prestrain on twinning 223
    7.5.5 Dislocation mechanism of
    twinning 223
    7.5.6 Twinning and fracture 224
    7.6 Strengthening and hardening
    mechanisms 224
    7.6.1 Point defect hardening 224
    7.6.2 Work-hardening 226
    7.6.3 Development of preferred
    orientation 232
    7.7 Macroscopic plasticity 235
    7.7.1 Tresca and von Mises criteria 235
    7.7.2 Effective stress and strain 236
    7.8 Annealing 237
    7.8.1 General effects of annealing 237
    7.8.2 Recovery 237
    7.8.3 Recrystallization 239
    7.8.4 Grain growth 242
    7.8.5 Annealing twins 243
    7.8.6 Recrystallization textures 245
    7.9 Metallic creep 245
    7.9.1 Transient and steady-state
    creep 245
    7.9.2 Grain boundary contribution to
    creep 247
    7.9.3 Tertiary creep and fracture 249
    7.9.4 Creep-resistant alloy design 249
    7.10 Deformation mechanism maps 251
    7.11 Metallic fatigue 252
    7.11.1 Nature of fatigue failure 252
    7.11.2 Engineering aspects of fatigue 252
    7.11.3 Structural changes accompanying
    fatigue 254
    7.11.4 Crack formation and fatigue
    failure 256


    Last edited by ajaytopgun; 11th May 2015 at 11:15 AM.

Tags for this Thread